Lemmas and proofs for "Implicit Polarized F: local type inference for impredicativity"

Henry Mercer	Cameron Ramsay	Neel Krishnaswami
henry@henrymercer.name	cfr26@cantab.ac.uk	nk480@cl.cam.ac.uk
	March 3, 2022	

Contents

De	efinitions	3
Le	emmas	10
A	Weakening	10
В	Declarative subtypingB.1 Isomorphic typesB.2 Transitivity	10 10 11
С	Weak context extension	11
D	Context extension	11
Ε	Well-formedness of subtyping	12
F	Soundness of subtypingF.1Lemmas for soundnessF.2Statement	12 12 13
G	Completeness of subtypingG.1 Lemmas for completenessG.2 Statement	13 13 14
Н	Determinism of subtyping	14
Ι	Decidability of subtypingI.1Lemmas for decidabilityI.2Statement	14 14 14
J	Isomorphic types	14
K	Well-formedness of typing	15
L	Determinism of typing	15

М	Decidability of typing	15
N	Soundness of typing N.1 Lemmas	15 15 16
0	Completeness of typing O.1 Lemmas	16 16 16
Pr	roofs	16
A'	Weakening	16
B'	Declarative subtyping B'.1 Isomorphic types B'.2 Transitivity	22 27 33
C'	Weak context extension	36
D'	Context extension	43
E'	Well-formedness of subtyping	49
F'	Soundness of subtyping F'.1 Lemmas for soundness F'.2 Statement	55 55 60
G'	Completeness of subtyping G'.1 Lemmas for completeness G'.2 Statement	65 65 67
H'	Determinism of subtyping	74
ľ	Decidability of subtyping I'.1 Lemmas for decidability I'.2 Statement	
J'	Isomorphic types	82
K'	Well-formedness of typing	86
Ľ,	Determinism of typing	100
M'	Decidability of typing	100
N'	Soundness of typing N'.1 Lemmas	
0'	Completeness of typing O'.1 Lemmas	

Definitions

Values	$\nu ::= x \mid \{t\}$
Computations	$t::=\lambda x:P.t\mid\Lambda\alpha.t\midreturn\;\nu\mid$
	$let\; x = \nu(s); t \mid let\; x : P = \nu(s); t$
Argument lists	$s ::= \epsilon \mid v, s$
Positive types	$P ::= \alpha \mid \downarrow N$
Negative types	$N ::= P ightarrow N \mid orall lpha. N \mid \uparrow P$
Typing contexts	$\Theta ::= \cdot \mid \Theta, \alpha$
Typing environments	$\Gamma ::= \cdot \mid \Gamma, x : P$

Figure 1: Implicit Polarized F

Figure 2: Well-formedness of declarative types

 $\Theta; \Gamma \vdash e : A$ The term *e* synthesizes the type A $\Theta; \Gamma \vdash s : N \gg M$ When passed to a head of type N, the argument list s synthesizes
the type M

$$\frac{x: P \in \Gamma}{\Theta; \Gamma \vdash x: P} \text{ Dvar} \qquad \qquad \frac{\Theta; \Gamma \vdash t: N}{\Theta; \Gamma \vdash \{t\}: \downarrow N} \text{ Dthunk}$$
$$\frac{\Theta; \Gamma, x: P \vdash t: N}{\Theta; \Gamma \vdash \lambda x: P. t: P \to N} \text{ D}\lambda \text{abs} \qquad \qquad \frac{\Theta, \alpha; \Gamma \vdash t: N}{\Theta; \Gamma \vdash \Lambda \alpha. t: \forall \alpha. N} \text{ Dgen}$$

$$\frac{\Theta; \Gamma \vdash \nu : P}{\Theta; \Gamma \vdash \mathsf{return} \ \nu : \uparrow P} \text{ Dreturn}$$

$$\begin{array}{ccc} \underline{\Theta; \Gamma \vdash \nu: \downarrow M} & \underline{\Theta; \Gamma \vdash s: M \gg \uparrow Q} & \underline{\Theta \vdash \uparrow Q \leq^{-} \uparrow P} & \underline{\Theta; \Gamma, x: P \vdash t: N} \\ \hline \\ \underline{\Theta; \Gamma \vdash \mathsf{let} \; x: P = \nu(s); t: N} \end{array} \\ \text{Dambiguouslet} \end{array}$$

$$\begin{array}{l} \displaystyle \frac{\Theta; \Gamma \vdash \nu : P \quad \Theta \vdash P \leq^+ Q \quad \Theta; \Gamma \vdash s : N \gg M}{\Theta; \Gamma \vdash \nu, s : (Q \rightarrow N) \gg M} \text{ Dspinecons} \\ \\ \displaystyle \frac{\Theta \vdash P \, type^+ \quad \Theta; \Gamma \vdash s : [P/\alpha]N \gg M}{\Theta; \Gamma \vdash s : (\forall \alpha, N) \gg M} \text{ Dspinetypeabs} \end{array}$$

Figure 3: Declarative type system

$$\begin{array}{l} \hline \Theta \vdash A \leq^{\pm} B \\ \hline \Theta \vdash \alpha \ \text{type}^{+} \\ \hline \Theta \vdash \alpha \leq^{+} \alpha \\ \hline \Theta \vdash \alpha \leq^{+} \alpha \\ \hline \Theta \vdash Q \leq^{+} \alpha \\ \hline \Theta \vdash Q \leq^{-} M \\ \hline \Theta \vdash Q \leq^{-} M \\ \hline \Theta \vdash Q \leq^{+} P \\ \hline \Theta \vdash P \leq^{-} Q \\ \hline \Theta \vdash P \\ \hline \Theta \vdash$$

Figure 4: Declarative subtyping

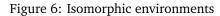
 $\Theta \vdash A \cong^{\pm} B$ In the context Θ , the types A and B are isomorphic

 $\Theta \vdash A \cong^{\pm} B \text{ iff } \Theta \vdash A \leq^{\pm} B \text{ and } \Theta \vdash B \leq^{\pm} A.$

Figure 5: Isomorphic types

$$\Theta \vdash \Gamma_1 \cong \Gamma_2$$
 In the context Θ , the environments Γ_1 and Γ_2 are isomorphic

$$\frac{\Theta \vdash \Gamma_1 \cong \Gamma_2 \quad \Theta \vdash P \cong^+ Q}{\Theta \vdash \Gamma_1, x : P \cong \Gamma_2, x : Q}$$
Eisovar

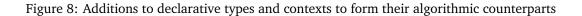


 $[\Theta]A$ Applying a context Θ , as a substitution, to a type A

$$[\cdot]A = A \qquad [\Theta, \hat{\alpha}]A = [\Theta]A [\Theta, \alpha]A = [\Theta]A \qquad [\Theta, \hat{\alpha} = P]A = [\Theta]([P/\hat{\alpha}]A)$$

Figure 7: Applying a context to a type

Positive types	$P ::= \ldots \mid \hat{\alpha}$
Contexts	$\Theta ::= \dots \mid \Theta, \hat{lpha} \mid \Theta, \hat{lpha} = P$



$$\begin{split} \hline \Theta \vdash A \leq^{\pm} B \dashv \Theta' & \text{In the context } \Theta, \text{ A checks algorithmically as a subtype of B,} \\ \hline \Theta_{L}, \alpha, \Theta_{R} \vdash \alpha \leq^{+} \alpha \dashv \Theta_{L}, \alpha, \Theta_{R} \leq^{\pm} \text{Arefl} & \frac{\Theta_{L} \vdash P \text{ type}^{+} \quad P \text{ ground}}{\Theta_{L}, \hat{\alpha}, \Theta_{R} \vdash P \leq^{+} \hat{\alpha} \dashv \Theta_{L}, \hat{\alpha} = P, \Theta_{R}} \leq^{\pm} \text{Ainst} \\ & \frac{\Theta \vdash M \leq^{-} N \dashv \Theta' \quad \Theta' \vdash N \leq^{-} [\Theta']M \dashv \Theta''}{\Theta \vdash \downarrow N \leq^{+} \downarrow M \dashv \Theta''} \leq^{\pm} \text{Ashift} \downarrow \\ \hline \frac{\Theta, \hat{\alpha} \vdash [\hat{\alpha}/\alpha]N \leq^{-} M \dashv \Theta', \hat{\alpha}[= P] \quad M \neq \forall \beta. M'}{\Theta \vdash \forall \alpha. N \leq^{-} M \dashv \Theta', \hat{\alpha} [= P] \quad M \neq \forall \beta. M'} \leq^{\pm} \text{AforallI} & \frac{\Theta, \alpha \vdash N \leq^{-} M \dashv \Theta', \alpha}{\Theta \vdash N \leq^{-} M \dashv \Theta'} \leq^{\pm} \text{AforallI} \\ & \frac{\Theta \vdash Q \leq^{+} P \dashv \Theta' \quad \Theta' \vdash [\Theta']N \leq^{-} M \dashv \Theta''}{\Theta \vdash P \rightarrow N \leq^{-} Q \rightarrow M \dashv \Theta''} \leq^{\pm} \text{Aarrow} \\ & \frac{\Theta \vdash Q \leq^{+} P \dashv \Theta' \quad \Theta' \vdash [\Theta']P \leq^{+} Q \dashv \Theta''}{\Theta \vdash P \otimes^{-} \uparrow Q \dashv \Theta''} \leq^{\pm} \text{Ashift} \uparrow \end{split}$$

т

Figure 9: Algorithmic subtyping

 $\Theta' \upharpoonright \Theta$ Θ' restricted to only contain existential variables which appear in Θ

$$\begin{array}{c} \overbrace{\cdot \upharpoonright \cdot = \cdot} & [\mathsf{empty} & \frac{\Theta' \upharpoonright \Theta = \Theta''}{\Theta', \alpha \upharpoonright \Theta, \alpha = \Theta'', \alpha} & [\mathsf{uvar} \\ \\ \hline \Theta' \upharpoonright \Theta = \Theta'' \\ \hline \Theta', \hat{\alpha} [= \mathsf{P}] \upharpoonright \Theta, \hat{\alpha} [= \mathsf{Q}] = \Theta'', \hat{\alpha} [= \mathsf{P}] & [\mathsf{guessin} & \frac{\Theta' \upharpoonright \Theta = \Theta''}{\Theta', \hat{\alpha} [= \mathsf{P}] \upharpoonright \Theta = \Theta''} & \hat{\alpha} [= \mathsf{Q}] \notin \Theta \\ \hline \Theta', \hat{\alpha} [= \mathsf{P}] \upharpoonright \Theta, \hat{\alpha} [= \mathsf{Q}] = \Theta'', \hat{\alpha} [= \mathsf{P}] & [\mathsf{guessnotin} \end{array}$$

Figure 10: Definition of context restriction

Figure 11: Algorithmic type system

$$\begin{split} \frac{\Theta; \Gamma \vdash \nu: P \dashv \Theta' \quad \Theta' \vdash P \leq^+ [\Theta'] Q \dashv \Theta'' \quad \Theta''; \Gamma \vdash s: [\Theta''] N \gg M \dashv \Theta'''}{\Theta; \Gamma \vdash \nu, s: Q \to N \gg M \dashv \Theta'''} \text{ Aspinecons } \\ \frac{\Theta; \Gamma \vdash s: N \gg M \dashv \Theta' \quad \alpha \notin FUV(N)}{\Theta; \Gamma \vdash s: (\forall \alpha. N) \gg M \dashv \Theta'} \text{ Aspinetypeabsnotin} \\ \frac{\Theta, \hat{\alpha}; \Gamma \vdash s: [\hat{\alpha}/\alpha] N \gg M \dashv \Theta', \hat{\alpha} [= P] \quad \alpha \in FUV(N)}{\Theta; \Gamma \vdash s: (\forall \alpha. N) \gg M \dashv \Theta', \hat{\alpha} [= P]} \text{ Aspinetypeabsin} \end{split}$$

$$\begin{array}{ccc} \Theta; \Gamma \vdash \nu : \downarrow M \dashv \Theta' \\ \Theta'; \Gamma \vdash s : M \gg \uparrow Q \dashv \Theta'' & FEV(Q) = \emptyset & \Theta''' = \Theta'' \restriction \Theta & \Theta'''; \Gamma, x : Q \vdash t : N \dashv \Theta^{(4)} \\ & \Theta; \Gamma \vdash \mathsf{let} \; x = \nu(s); t : N \dashv \Theta^{(4)} \end{array}$$
Aunambiguouslet

 $\overline{\Theta; \Gamma \vdash \varepsilon: N \gg N \dashv \Theta} \text{ Aspinenil}$

 $\frac{ \substack{\Theta; \Gamma \vdash \nu: \downarrow M \dashv \Theta' \quad \Theta'; \Gamma \vdash s: M \gg \uparrow Q \dashv \Theta'' \quad \Theta'' \vdash P \leq^+ Q \dashv \Theta'''}{ \substack{\Theta''' \vdash [\Theta'''] Q \leq^+ P \dashv \Theta^{(4)} \quad \Theta^{(5)} = \Theta^{(4)} \upharpoonright \Theta \quad \Theta^{(5)}; \Gamma, x: P \vdash t: N \dashv \Theta^{(6)}}{ \Theta; \Gamma \vdash \mathsf{let} \; x: P = \nu(s); t: N \dashv \Theta^{(6)}} \; \mathsf{Aambiguouslet} }$

$$\begin{array}{l} \displaystyle \frac{\Theta; \Gamma; x: P \vdash t: N \dashv \Theta'}{\Theta; \Gamma \vdash \lambda x: P.t: P \rightarrow N \dashv \Theta'} \text{ A}_{\lambda abs} & \displaystyle \frac{\Theta, \alpha; \Gamma \vdash t: N \dashv \Theta', \alpha}{\Theta; \Gamma \vdash \Lambda \alpha. t: \forall \alpha. N \dashv \Theta'} \text{ Agen} \\ \\ \displaystyle \frac{\Theta; \Gamma \vdash t: N \dashv \Theta'}{\Theta; \Gamma \vdash \{t\}: \downarrow N \dashv \Theta'} \text{ Athunk} & \displaystyle \frac{\Theta; \Gamma \vdash \nu: P \dashv \Theta'}{\Theta; \Gamma \vdash \text{ return } \nu: \uparrow P \dashv \Theta'} \text{ Areturn} \end{array}$$

$$\frac{\mathbf{x}: \mathbf{P} \in \Gamma}{\Theta; \Gamma \vdash \mathbf{x}: \mathbf{P} \dashv \Theta} \text{ Avar}$$

 $\Theta; \Gamma \vdash e : A \dashv \Theta'$ The term *e* synthesizes the type A, producing the context Θ' $\Theta; \Gamma \vdash s : N \gg M \dashv \Theta'$ When passed to a head of type N, the argument list s synthesizes
the type M, producing the context Θ'

 Θ ctx Θ is a well-formed context

Figure 12: Well-formedness of contexts

$$\begin{array}{c} \overline{\Theta \vdash A \ type^{\pm}} \end{array} \text{ In the context } \Theta, A \text{ is a well-formed positive/negative type} \\ \\ \\ \frac{\hat{\alpha} \in EV(\Theta)}{\Theta \vdash \hat{\alpha} \ type^{+}} \ \mathsf{Twfguess} \end{array}$$

Figure 13: Additional well-formedness rules for algorithmic types. $EV(\Theta)$ contains all the existential type variables in Θ , independently of whether they are solved or unsolved.

Figure 14: Context extension

Figure 15: Weak context extension. We highlight the rules that are "new" compared with context extension.

 $\Theta \vdash \Gamma env$ The environment Γ is well-formed with respect to the context Θ

$$\frac{\Theta \vdash \Gamma \text{ env } \Theta \vdash P \text{ type}^+ \quad P \text{ ground}}{\Theta \vdash \Gamma, x : P \text{ env}} \text{ Ewfvar}$$

Figure 16: Well-formedness of typing environments

$$\begin{split} \hline \left|A\right|_{NQ} & \text{The size of a type A, ignoring quantification} \\ & \left|\alpha\right|_{NQ} = 1 & \left|\downarrow N\right|_{NQ} = \left|N\right|_{NQ} + 1 & \left|P \rightarrow N\right|_{NQ} = \left|P\right|_{NQ} + \left|N\right|_{NQ} + 1 \\ & \left|\hat{\alpha}\right|_{NQ} = 1 & \left|\forall \alpha . N\right|_{NQ} = \left|N\right|_{NQ} & \left|\uparrow P\right|_{NQ} = \left|P\right|_{NQ} + 1 \end{split}$$

Figure 17: The size of a type, ignoring universal quantification

 $\begin{array}{c|c} \hline NPQ(A) \\ \hline NPQ(\alpha) = 0 \\ NPQ(\hat{\alpha}) = 0 \\ NPQ(\hat{\alpha}) = 0 \\ NPQ(\hat{\alpha}) = 0 \\ \end{array} \begin{array}{c} NPQ(\downarrow N) = 0 \\ NPQ(\forall \alpha, N) = 1 + NPQ(N) \\ NPQ(\uparrow P) = 0 \\ \end{array}$

Figure 18: The number of prenex quantifiers in a type A

 $\|\Theta\|$ The declarative context corresponding to the algorithmic context Θ

 $\|\cdot\| = \cdot \qquad \qquad \|\Theta, \alpha\| = \|\Theta\|, \alpha \qquad \qquad \|\Theta, \hat{\alpha}\| = \|\Theta\| \qquad \qquad \|\Theta, \hat{\alpha} = P\| = \|\Theta\|$

Figure 19: Producing a declarative context from an algorithmic context

System F types	System F terms
$\llbracket A \to B \rrbracket = \mathop{\downarrow} (\llbracket A \rrbracket \to \mathop{\uparrow} \llbracket B \rrbracket)$	$[\![x]\!] = return \; x$
$\llbracket \forall \alpha. A \rrbracket = \mathop{\downarrow} \forall \alpha. \uparrow \llbracket A \rrbracket$	$\llbracket \lambda x : A. e \rrbracket = return \{ \lambda x : \llbracket A \rrbracket. \llbracket e \rrbracket \}$
	$\llbracket e_1 \ e_2 \rrbracket = \text{let } f[: P] = \{ \llbracket e_1 \rrbracket \};$
	let $x[: Q] = \{ \llbracket e_2 \rrbracket \};$
	$let \ y[: R] = f \ x;$
	return y
	$\llbracket \Lambda lpha. e rbracket = \Lambda lpha. \llbracket e rbracket$
	$\llbracket e \ [A] \rrbracket = \llbracket e \rrbracket$

Figure 20: An embedding of typeable terms in System F under a call-by-value evaluation order in Implicit Polarized F.

Lemmas

Weakening Α

Lemma A.1 (Pushing uvars right preserves w.f.). Let $\Theta[\Theta_M]$ abbreviate $\Theta_{I}, \Theta_M, \Theta_R$. Then if $\Theta[\alpha, \Theta_M] \vdash$ A type[±], $\Theta[\Theta_M, \alpha] \vdash A$ type[±].

Lemma A.2 (Term well-formedness weakening). *If* $\Theta \vdash A$ type[±] *then* $\Theta, \Theta' \vdash A$ type[±].

Lemma A.3 (Pushing uvars right in declarative judgment). Let $\Theta[\Theta_M]$ abbreviate $\Theta_L, \Theta_M, \Theta_R$. Then if $\Theta[\alpha, \Theta_{\mathcal{M}}] \vdash A \leq^{\pm} B, \Theta[\Theta_{\mathcal{M}}, \alpha] \vdash A \leq^{\pm} B.$

Lemma A.4 (Declarative subtyping weakening). *If* $\Theta \vdash A \leq^{\pm} B$ *then* $\Theta, \Theta' \vdash A \leq^{\pm} B$.

Declarative subtyping Β

Lemma B.1 (Declarative subtyping is reflexive). If $\Theta \vdash A$ type^{\pm} then $\Theta \vdash A \leq^{\pm} A$.

Lemma B.2 (Declarative substitution w.f.). *If* $\Theta_L, \Theta_R \vdash P$ type⁺ and $\Theta_L, \alpha, \Theta_R \vdash A$ type[±], then $\Theta_L, \Theta_R \vdash A$ $[P/\alpha]A$ type[±].

Lemma B.3 (Declarative subtyping is stable under substitution). If $\Theta_L, \Theta_R \vdash P$ type⁺, then:

- If $\Theta_L, \alpha, \Theta_R \vdash Q$ type⁺, $\Theta_L, \alpha, \Theta_R \vdash R$ type⁺, and $\Theta_L, \alpha, \Theta_R \vdash Q \leq^+ R$, then $\Theta_L, \Theta_R \vdash [P/\alpha]Q \leq^+$ $[P/\alpha]R.$
- *If* Θ_L , α , $\Theta_R \vdash N$ type⁻, Θ_L , α , $\Theta_R \vdash M$ type⁻, and Θ_L , α , $\Theta_R \vdash N \leq ^- M$, then Θ_L , $\Theta_R \vdash [P/\alpha]N \leq ^ [P/\alpha]M.$

Lemma B.4 (Symmetry of positive declarative subtyping). If $\Theta \vdash P \leq^+ Q$ then $\Theta \vdash Q \leq^+ P$ by a derivation of equal height.

B.1 Isomorphic types

Lemma B.5 (Mutual subtyping substitution). Given $\Theta, \vec{\alpha} \vdash \vec{P}$ type⁺ and $\Theta, \vec{\beta} \vdash \vec{Q}$ type⁺:

• If:

1. $\Theta, \vec{\alpha} \vdash \mathsf{R} \,\mathsf{type}^+$ 2. $\Theta, \overline{\beta} \vdash S type^+$ 3. $\Theta, \vec{\alpha} \vdash R \leq^+ [P/\hat{\beta}]S$ 4. $\Theta, \vec{\beta} \vdash S \leq^+ [Q/\alpha]R$

then:

1.
$$\forall \beta_i \in \vec{\beta}. \beta_i \in FUV(S) \implies \exists \gamma. P_i = \gamma$$

2. $\forall \alpha_i \in \vec{\alpha}. \alpha_i \in FUV(R) \implies \exists \gamma. Q_i = \gamma$

$$\begin{array}{ll} 1. \hspace{0.2cm} \Theta, \overrightarrow{\alpha} \vdash M \hspace{0.1cm} type^{-} \\ 2. \hspace{0.2cm} \Theta, \overrightarrow{\beta} \vdash N \hspace{0.1cm} type^{-} \\ 3. \hspace{0.2cm} \Theta, \overrightarrow{\alpha} \vdash [\overrightarrow{P/\beta}] N \hspace{0.1cm} \leq^{-} M \\ 4. \hspace{0.2cm} \Theta, \overrightarrow{\beta} \vdash [\overrightarrow{Q/\alpha}] M \hspace{0.1cm} \leq^{-} N \end{array}$$

then:

• If:

1.
$$\forall \beta_i \in \vec{\beta} . \beta_i \in FUV(N) \implies \exists \gamma . P_i = \gamma$$

2. $\forall \alpha_i \in \vec{\alpha} . \alpha_i \in FUV(M) \implies \exists \gamma . Q_i = \gamma$

Lemma B.6 (Isomorphic types are the same size). If:

1. $\Theta \vdash A$ type⁺ 2. $\Theta \vdash B$ type⁺ 3. $\Theta \vdash A \cong^{\pm} B$ then $|A|_{NO} = |B|_{NO}$.

B.2 Transitivity

Lemma B.7 (Declarative subtyping is transitive). *If* $\Theta \vdash A$ type[±], $\Theta \vdash B$ type[±], $\Theta \vdash C$ type[±], $\Theta \vdash A \leq^{\pm} B$, and $\Theta \vdash B \leq^{\pm} C$, then $\Theta \vdash A \leq^{\pm} C$.

C Weak context extension

Lemma C.1 (\Longrightarrow subsumes \longrightarrow). If $\Theta \longrightarrow \Theta'$, then $\Theta \Longrightarrow \Theta'$.

Lemma C.2 (Weak context extension is reflexive). For all contexts Θ , $\Theta \implies \Theta$.

Lemma C.3 (Equality of declarative contexts (weak)). If $\Theta \implies \Theta'$, then $\|\Theta\| = \|\Theta'\|$.

Lemma C.4 (Weak context extension is transitive). If $\Theta \Longrightarrow \Theta'$ and $\Theta' \Longrightarrow \Theta''$, then $\Theta \Longrightarrow \Theta''$.

Lemma C.5 (Weak context extension preserves well-formedness). If $\Theta \vdash A$ type^{\pm} and $\Theta \implies \Theta'$ then $\Theta' \vdash A$ type^{\pm}.

Lemma C.6 (Weak context extension preserves w.f. envs). If $\Theta \implies \Theta'$ and $\Theta \vdash \Gamma$ env, then $\Theta' \vdash \Gamma$ env.

Lemma C.7 (The extended context makes the type ground (weak)). *If* Θ ctx, Θ' ctx, $\Theta \Longrightarrow \Theta'$, and $[\Theta'][\Theta]A$ ground, then $[\Theta']A$ ground.

Lemma C.8 (Extending context preserves groundness (weak)). *If* Θ ctx, Θ' ctx, $\Theta \implies \Theta'$, and $[\Theta]$ *A ground, then* $[\Theta']$ *A ground.*

D Context extension

Lemma D.1 (Context extension is reflexive). For all contexts Θ , $\Theta \longrightarrow \Theta$.

Lemma D.2 (Equality of declarative contexts). If $\Theta \longrightarrow \Theta'$, then $\|\Theta\| = \|\Theta'\|$.

Lemma D.3 (Context extension is transitive). If $\Theta \longrightarrow \Theta'$ and $\Theta' \longrightarrow \Theta''$, then $\Theta \longrightarrow \Theta''$.

Lemma D.4 (Context extension preserves w.f.). If $\Theta \vdash A$ type[±] and $\Theta \longrightarrow \Theta'$, then $\Theta' \vdash A$ type[±].

Lemma D.5 (Applying a context to a ground type). *If* A *ground, then* $[\Theta]A = A$.

Lemma D.6 (Context application is idempotent). *If* Θ ctx, *then* $[\Theta][\Theta]A = [\Theta]A$.

Lemma D.7 (The extended context makes the type ground). *If* Θ ctx, Θ' ctx, $\Theta \longrightarrow \Theta'$, and $[\Theta'][\Theta]$ *A ground, then* $[\Theta']$ *A ground.*

Lemma D.8 (Extending context preserves groundness). If Θ ctx, Θ' ctx, $\Theta \longrightarrow \Theta'$, and $[\Theta]A$ ground, then $[\Theta']A$ ground.

E Well-formedness of subtyping

Lemma E.1 (Applying context to the type preserves w.f.). *If* Θ ctx *and* $\Theta \vdash A$ type[±], *then* $\Theta \vdash [\Theta]A$ type[±].

Lemma E.2 (Algorithmic subtyping is w.f.).

- If $\Theta \vdash P \leq^+ Q \dashv \Theta'$, Θ ctx, P ground, and $[\Theta]Q = Q$, then Θ' ctx, $\Theta \longrightarrow \Theta'$, and $[\Theta']Q$ ground.
- If $\Theta \vdash N \leq ^{-} M \dashv \Theta'$, $\Theta \text{ ctx}$, M ground, and $[\Theta]N = N$, then $\Theta' \text{ ctx}$, $\Theta \longrightarrow \Theta'$, and $[\Theta']N$ ground.

F Soundness of subtyping

F.1 Lemmas for soundness

Lemma F.1 (Completing context preserves w.f.). *If* $\Theta \vdash A$ type^{\pm} *and* A *ground then* $\|\Theta\| \vdash A$ type^{\pm}.

Lemma F.2 (\implies leads to isomorphic types). *If*:

- 1. $\Theta \vdash A$ type[±]
- $\textit{2. } \Theta \Longrightarrow \Theta'$
- 3. $[\Theta']$ A ground
- 4. $\Theta \operatorname{ctx}$
- 5. Θ' ctx

then $\|\Theta\| \vdash [\Theta'][\Theta]A \cong^{\pm} [\Theta']A$.

Lemma F.3 (\implies leads to isomorphic types (ground)). *If:*

- 1. $\Theta \vdash A \text{ type}^{\pm}$
- 2. $[\Theta]$ A ground
- 3. $\Theta \Longrightarrow \Theta'$
- 4. $\Theta \operatorname{ctx}$
- 5. $\Theta' \operatorname{ctx}$
- then $\|\Theta\| \vdash [\Theta]A \cong^{\pm} [\Theta']A$.

Lemma F.4 (\longrightarrow leads to isomorphic types). *If*:

- 1. $\Theta \vdash A \text{ type}^{\pm}$
- $\textit{2.} \ \Theta \longrightarrow \Theta'$
- 3. $[\Theta']$ A ground
- 4. Θctx
- 5. Θ' ctx

then $\|\Theta\| \vdash [\Theta'][\Theta]A \cong^{\pm} [\Theta']A$.

Lemma F.5 (\longrightarrow leads to isomorphic types (ground)). *If:*

- 1. $\Theta \vdash A \text{ type}^{\pm}$
- 2. $[\Theta]$ A ground
- 3. $\Theta \longrightarrow \Theta'$
- 4. $\Theta \operatorname{ctx}$
- 5. $\Theta' \operatorname{ctx}$

then $\|\Theta\| \vdash [\Theta]A \cong^{\pm} [\Theta']A$.

F.2 Statement

Theorem F.6 (Soundness of algorithmic subtyping). *Given a well-formed algorithmic context* Θ *and a well-formed complete context* Ω *:*

- If $\Theta \vdash P \leq^+ Q \dashv \Theta', \Theta' \longrightarrow \Omega$, P ground, $[\Theta]Q = Q, \Theta \vdash P$ type⁺, and $\Theta \vdash Q$ type⁺, then $\|\Theta\| \vdash P \leq^+ [\Omega]Q$.
- *If* $\Theta \vdash N \leq^{-} M \dashv \Theta', \Theta' \longrightarrow \Omega$, *M* ground, $[\Theta]N = N, \Theta \vdash N$ type⁻, and $\Theta \vdash M$ type⁻, *then* $\|\Theta\| \vdash [\Omega]N \leq^{-} M$.

G Completeness of subtyping

G.1 Lemmas for completeness

Lemma G.1 (Completion preserves w.f.). *If* Θ ctx, $\Theta \vdash A$ type[±], and $\Theta \longrightarrow \Omega$, then $\|\Theta\| \vdash [\Omega]A$ type[±].

Lemma G.2 (Extension solving guess). If $\Theta_L, \hat{\alpha}, \Theta_R \longrightarrow \Omega_L, \hat{\alpha} = Q, \Omega_R$ and $[\Omega_L]\Theta_L \vdash P \cong^+ Q$, then $\Theta_L, \hat{\alpha} = P, \Theta_R \longrightarrow \Omega_L, \hat{\alpha} = Q, \Omega_R$.

Lemma G.3 (Context extension substitution size). If:

- 1. Θctx
- *2*. $\Theta \vdash A$ type[±]
- $\textbf{3. }\Theta \longrightarrow \Omega$
- 4. Ωctx

then $|[\Omega][\Theta]A|_{NO} = |[\Omega]A|_{NO}$.

Lemma G.4 (Context extension ground substitution size). If:

- 1. Θctx
- *2*. $\Theta \vdash A$ type[±]
- 3. $[\Theta]$ A ground
- $\textbf{4. }\Theta \longrightarrow \Omega$
- 5. $\Omega \operatorname{ctx}$

then $|[\Theta]A|_{NQ} = |[\Omega]A|_{NQ}$.

G.2 Statement

Theorem G.5 (Completeness of algorithmic subtyping). If Θ ctx, $\Theta \longrightarrow \Omega$, and Ω ctx, then:

- If $\|\Theta\| \vdash P \leq^+ [\Omega]Q$, $\Theta \vdash P$ type⁺, $\Theta \vdash Q$ type⁺, P ground, and $[\Theta]Q = Q$, then $\exists \Theta'$ such that $\Theta \vdash P \leq^+ Q \dashv \Theta'$ and $\Theta' \longrightarrow \Omega$.
- If $\|\Theta\| \vdash [\Omega]N \leq M$, $\Theta \vdash M$ type⁻, $\Theta \vdash N$ type⁻, M ground, and $[\Theta]N = N$, then $\exists \Theta'$ such that $\Theta \vdash N \leq M \dashv \Theta'$ and $\Theta' \longrightarrow \Omega$.

H Determinism of subtyping

Lemma H.1 (Algorithmic subtyping is deterministic).

- If $\Theta \vdash P \leq^+ Q \dashv \Theta'_1$ and $\Theta \vdash P \leq^+ Q \dashv \Theta'_2$, then $\Theta'_1 = \Theta'_2$.
- If $\Theta \vdash N \leq M \dashv \Theta'_1$ and $\Theta \vdash N \leq M \dashv \Theta'_2$, then $\Theta'_1 = \Theta'_2$.

I Decidability of subtyping

I.1 Lemmas for decidability

Lemma I.1 (Completed non-ground size bounded by ground size).

- If $\Theta \vdash P \leq^+ Q \dashv \Theta'$, Θ ctx, P ground, and $[\Theta]Q = Q$, then $|[\Theta']Q|_{_{NO}} \leq |P|_{_{NO}}$.
- If $\Theta \vdash N \leq M \dashv \Theta'$, Θ ctx, M ground, and $[\Theta]N = N$, then $|[\Theta']N|_{NO} \leq |M|_{NO}$.

I.2 Statement

Lemma I.2 (Decidability of algorithmic subtyping). There exists a total order \Box on well-formed algorithmic subtyping judgments such that for each derivation with subtyping judgment premises A_i and conclusion B, each A_i compares less than B, i.e. $\forall i. A_i \Box B$.

J Isomorphic types

Lemma J.1 (Isomorphic environments type the same terms). If $\Theta \vdash \Gamma \cong \Gamma'$, then:

- If $\Theta; \Gamma \vdash \nu : P$ then $\exists P'$ such that $\Theta \vdash P \cong^{-} P'$ and $\Theta; \Gamma' \vdash \nu : P'$.
- If $\Theta; \Gamma \vdash t : N$ then $\exists N'$ such that $\Theta \vdash N \cong^{-} N'$ and $\Theta; \Gamma' \vdash t : N'$.
- If Θ ; $\Gamma \vdash s : N \gg M$ and $\Theta \vdash N \cong^{-} N'$, then $\exists M'$ such that $\Theta \vdash M \cong^{-} M'$ and Θ ; $\Gamma \vdash s : N' \gg M'$.

K Well-formedness of typing

Lemma K.1 (Well-formedness of restricted contexts). *If* Θ ctx, Θ' ctx, $\Theta \implies \Theta'$, *then* $\Theta' \upharpoonright \Theta$ ctx, $\Theta \longrightarrow \Theta' \upharpoonright \Theta$, and $\Theta' \upharpoonright \Theta \implies \Theta'$.

Lemma K.2 (Type well-formed with type variable removed). *If* Θ_L , α , $\Theta_R \vdash T$ type^{\pm} and $\alpha \notin$ FUV(T), then Θ_L , $\Theta_R \vdash T$ type^{\pm}.

Lemma K.3 (Substitution preserves well-formedness of types). If Θ_L , α , $\Theta_R \vdash T$ type[±], then Θ_L , $\hat{\alpha}$, $\Theta_R \vdash [\hat{\alpha}/\alpha]T$ type[±].

Lemma K.4 (Context extension maintains variables). *If* $\Theta \longrightarrow \Omega$, *then* $FUV(\Theta) = FUV(\Omega)$ *and* $FEV(\Theta) = FEV(\Omega)$.

Lemma K.5 (Algorithmic typing is w.f.). *Given a typing context* Θ *and typing environment* Γ *such that* Θ ctx *and* $\Theta \vdash \Gamma$ env:

- If Θ ; $\Gamma \vdash \nu$: $P \dashv \Theta'$, then Θ' ctx, $\Theta \longrightarrow \Theta'$, $\Theta' \vdash P$ type⁺, and P ground.
- If Θ ; $\Gamma \vdash t : N \dashv \Theta'$, then $\Theta' \operatorname{ctx}$, $\Theta \longrightarrow \Theta'$, $\Theta' \vdash N$ type⁻, and N ground.
- If Θ ; $\Gamma \vdash s : N \gg M \dashv \Theta'$, $\Theta \vdash N$ type⁻, and $[\Theta]N = N$, then Θ' ctx, $\Theta \implies \Theta'$, $\Theta' \vdash M$ type⁻, $[\Theta']M = M$, and $FEV(M) \subseteq FEV(N) \cup (FEV(\Theta') \setminus FEV(\Theta))$.

L Determinism of typing

Lemma L.1 (Algorithmic typing is deterministic).

- If Θ ; $\Gamma \vdash e : A_1 \dashv \Theta'_1$ and Θ ; $\Gamma \vdash e : A_2 \dashv \Theta'_2$, then $A_1 = A_2$ and $\Theta'_1 = \Theta'_2$.
- If Θ ; $\Gamma \vdash t : N \gg M_1 \dashv \Theta'_1$ and Θ ; $\Gamma \vdash t : N \gg M_2 \dashv \Theta'_2$, then $M_1 = M_2$ and $\Theta'_1 = \Theta'_2$.

M Decidability of typing

Lemma M.1 (Decidability of algorithmic typing). There exists a total order \sqsubset on well-formed algorithmic typing judgments such that for each derivation with typing judgment premises A_i and conclusion B, each A_i compares less than B, i.e. $\forall i. A_i \sqsubset B$.

N Soundness of typing

N.1 Lemmas

Lemma N.1 (Extended complete context). *If* Θ' ctx, Ω ctx, $\Theta \longrightarrow \Omega$, $\Theta \Longrightarrow \Theta'$, and $\Theta' \upharpoonright \Theta \longrightarrow \Omega$, then $\exists \Omega' \text{ such that } \Omega' \text{ ctx, } \Theta' \longrightarrow \Omega'$, and $\Omega \Longrightarrow \Omega'$.

Lemma N.2 (Identical restricted contexts). *If* Θ' ctx *and* $\Theta \longrightarrow \Theta'$ *, then* $\Theta'' \upharpoonright \Theta = \Theta'' \upharpoonright \Theta'$.

N.2 Statement

Theorem N.3 (Soundness of algorithmic typing). *If* Θ ctx, $\Theta \vdash \Gamma$ env, $\Theta' \longrightarrow \Omega$, and Ω ctx, then:

- If Θ ; $\Gamma \vdash \nu$: $P \dashv \Theta'$, then $||\Theta||$; $\Gamma \vdash \nu : [\Omega]P$.
- If Θ ; $\Gamma \vdash t : \mathbb{N} \dashv \Theta'$, then $||\Theta||$; $\Gamma \vdash t : [\Omega]\mathbb{N}$.
- *If* Θ ; $\Gamma \vdash s : N \gg M \dashv \Theta'$, $\Theta \vdash N$ type⁻, and $[\Theta]N = N$, then $\exists M'$ such that $\|\Theta\| \vdash [\Omega]M \cong^{-} M'$ and $\|\Theta\|$; $\Gamma \vdash s : [\Omega]N \gg M'$.

O Completeness of typing

O.1 Lemmas

Lemma 0.1 (Weak context extension maintains variables). If $\Theta \implies \Theta'$ then $FEV(\Theta) \subseteq FEV(\Theta')$ and $FUV(\Theta) = FUV(\Theta')$.

Lemma 0.2 (Reversing context extension from a complete context). If $\Omega \longrightarrow \Theta$ then $\Theta \longrightarrow \Omega$.

Lemma 0.3 (Pulling back restricted contexts). If $\Theta \longrightarrow \Theta'$ and $\Theta' \upharpoonright \Theta'' \longrightarrow \Theta'''$, then $\Theta \upharpoonright \Theta'' \longrightarrow \Theta'''$.

O.2 Statement

Theorem 0.4 (Completeness of algorithmic typing). *If* Θ ctx, $\Theta \vdash \Gamma$ env, $\Theta \longrightarrow \Omega$, and Ω ctx, *then:*

- If $||\Theta||$; $\Gamma \vdash \nu$: P then $\exists \Theta'$ such that Θ ; $\Gamma \vdash \nu$: P $\dashv \Theta'$ and $\Theta' \longrightarrow \Omega$.
- If $\|\Theta\|$; $\Gamma \vdash t$: N then $\exists \Theta'$ such that Θ ; $\Gamma \vdash t$: N $\dashv \Theta'$ and $\Theta' \longrightarrow \Omega$.
- If $\|\Theta\|$; $\Gamma \vdash s : [\Omega]N \gg M$, $\Theta \vdash N$ type⁻, and $[\Theta]N = N$, then $\exists \Theta', \Omega'$ and M' such that $\Theta; \Gamma \vdash s : N \gg M' \dashv \Theta', \Omega \Longrightarrow \Omega', \Theta' \longrightarrow \Omega', \|\Theta\| \vdash [\Omega']M' \cong^- M$, $[\Theta']M' = M'$, and Ω' ctx.

Proofs

A' Weakening

Lemma A.1 (Pushing uvars right preserves w.f.). Let $\Theta[\Theta_M]$ abbreviate $\Theta_L, \Theta_M, \Theta_R$. Then if $\Theta[\alpha, \Theta_M] \vdash A$ type[±], $\Theta[\Theta_M, \alpha] \vdash A$ type[±].

Proof. By rule induction on $\Theta[\alpha, \Theta_M] \vdash A$ type[±].

• Case
$$\begin{array}{l} \beta \in UV(\Theta[\alpha, \Theta_M])\\ \hline \Theta[\alpha, \Theta_M] \vdash \beta \ type^+ \end{array} \mathsf{Twfuvar} \\ \\ \beta \in UV(\Theta[\alpha, \Theta_M]) \qquad \mathsf{Subderivation} \\ \\ \beta \in UV(\Theta[\Theta_M, \alpha]) \qquad \mathsf{Since} \ UV \ ignores \ order \\ \\ \blacksquare \qquad \Theta[\Theta_M, \alpha] \vdash \beta \ type^+ \qquad \mathsf{By} \ \mathsf{Twfuvar} \end{array}$$

• Case $\frac{\hat{\alpha} \in EV(\Theta[\alpha,\Theta_M])}{\Theta[\alpha,\Theta_M] \vdash \hat{\alpha} \, type^+} \; \mathsf{Twfguess}$

$$\begin{split} \hat{\alpha} \in & \mathsf{EV}(\Theta[\alpha,\Theta_M]) \qquad \text{Subderivation} \\ \hat{\alpha} \in & \mathsf{EV}(\Theta[\Theta_M,\alpha]) \qquad \text{Since EV ignores order} \\ & & \bullet \\ \blacksquare \quad \Theta[\Theta_M,\alpha] \vdash \hat{\alpha} \ \text{type}^+ \qquad & & \text{By Twfguess} \end{split}$$

• **Case** $\frac{\Theta[\alpha, \Theta_M] \vdash N \text{ type}^-}{\Theta[\alpha, \Theta_M] \vdash \downarrow N \text{ type}^+} \text{ Twfshift} \downarrow$

• Case
$$\frac{\Theta_{L}, \alpha, \Theta_{M}, \Theta_{R}, \beta \vdash N \text{ type}^{-}}{\Theta_{L}, \alpha, \Theta_{M}, \Theta_{R} \vdash \forall \beta. N \text{ type}^{-}} \text{ Twfforall}$$

$$\begin{array}{lll} \Theta_{L}, \alpha, \Theta_{M}, \Theta_{R}, \beta \vdash N \ type^{-} & Subderivation \\ \Theta_{L}, \Theta_{M}, \alpha, \Theta_{R}, \beta \vdash N \ type^{-} & By \ i.h. \\ \hline & & \Theta_{L}, \Theta_{M}, \alpha, \Theta_{R} \vdash \forall \beta. N \ type^{-} & By \ Twfforall \end{array}$$

• Case $\frac{\Theta[\alpha, \Theta_M] \vdash P \text{ type}^+ \quad \Theta[\alpha, \Theta_M] \vdash N \text{ type}^-}{\Theta[\alpha, \Theta_M] \vdash P \rightarrow N \text{ type}^-} \text{ Twfarrow}$

$$\begin{array}{lll} & \Theta[\alpha,\Theta_{M}]\vdash P \ type^{+} & Subderivation \\ & \Theta[\Theta_{M},\alpha]\vdash P \ type^{+} & By \ i.h. \\ & \Theta[\alpha,\Theta_{M}]\vdash N \ type^{-} & Subderivation \\ & \Theta[\Theta_{M},\alpha]\vdash N \ type^{-} & By \ i.h. \end{array}$$

• Case
$$\frac{\Theta[\alpha, \Theta_M] \vdash P \text{ type}^+}{\Theta[\alpha, \Theta_M] \vdash \uparrow P \text{ type}^-} \text{ Twfshift}\uparrow$$

 $\begin{array}{lll} & \Theta[\alpha,\Theta_{\mathcal{M}}] \vdash \mathsf{P} \ \text{type}^+ & \text{Subderivation} \\ & \Theta[\Theta_{\mathcal{M}},\alpha] \vdash \mathsf{P} \ \text{type}^+ & \text{By i.h.} \\ \\ & \blacksquare & \Theta[\Theta_{\mathcal{M}},\alpha] \vdash \uparrow \mathsf{P} \ \text{type}^- & \text{By Twfshift} \uparrow \end{array}$

Lemma A.2 (Term well-formedness weakening). If $\Theta \vdash A$ type^{\pm} then $\Theta, \Theta' \vdash A$ type^{\pm}. *Proof.* By rule induction on $\Theta \vdash A$ type^{\pm}.

• Case

$$\frac{\alpha \in UV(\Theta)}{\Theta \vdash \alpha type^{\pm}} \operatorname{Twfuvar}$$

$$\alpha \in UV(\Theta, \Theta') \quad \text{Subderivation}$$

$$\alpha \in UV(\Theta, \Theta') \quad \text{Since UV}(\Theta) \subseteq UV(\Theta, \Theta')$$
=
• $\Theta, \Theta' \vdash \alpha type^{\pm}$ $\operatorname{By} \operatorname{Twfuvar}$
• Case

$$\frac{\alpha \in EV(\Theta)}{\Theta \vdash \alpha type^{\pm}} \operatorname{Twfguess}$$

$$\frac{\alpha \in EV(\Theta)}{\Theta \vdash \alpha type^{\pm}} \operatorname{Subderivation}$$

$$\alpha \in EV(\Theta, \Theta') \quad \text{Since EV}(\Theta) \subseteq EV(\Theta, \Theta')$$
=
= $\Theta, \Theta' \vdash \alpha type^{\pm}$ $\operatorname{By} \operatorname{Twfguess}$
• Case

$$\frac{\Theta \vdash N type^{-}}{\Theta \vdash \downarrow N type^{\pm}} \operatorname{Twfshift}_{\downarrow}$$

$$\frac{\Theta \vdash N type^{-}}{\Theta \vdash \downarrow N type^{\pm}} \operatorname{Twfshift}_{\downarrow}$$
• Case

$$\frac{\Theta, \alpha \vdash N type^{-}}{\Theta \vdash \forall \alpha. N type^{-}} \operatorname{By} i.h.$$
=
= $\Theta, \Theta' \vdash \lambda N type^{-}$ $\operatorname{By} ti.h.$
=

$$\Theta, \alpha \vdash N type^{-} \text{Subderivation}$$

$$\Theta, \alpha, \alpha' \vdash N type^{-} \text{By i.h.}$$

$$\Theta, \Theta', \alpha \vdash N type^{-} \text{By i.h.}$$

$$\Theta, \Theta', \alpha \vdash N type^{-} \text{By i.h.}$$

$$\Theta, \Theta', \alpha \vdash N type^{-} \text{By i.h.}$$

$$\Theta, \Theta' \vdash \forall \alpha. N type^{-} \text{By i.h.}$$
=

$$\Theta, \Theta' \vdash \forall \alpha. N type^{-} \text{By i.h.}$$
=

$$\Theta, \Theta' \vdash \forall \alpha. N type^{-} \text{By therma A.1 (Pushing uvars right preserves w.f.)}$$
=

$$\Theta, \Theta' \vdash \forall \alpha. N type^{-} \text{By Twfforall}$$
• Case

$$\frac{\Theta \vdash P type^{+}}{\Theta \vdash P \to N type^{-}} \operatorname{Twfarrow}$$

$$\Theta \vdash P type^{+} \text{Subderivation}$$

$$\Theta, \Theta' \vdash \forall xpe^{+} \text{Subderivation}$$

$$\Theta, \Theta' \vdash \psi type^{+} \text{Subderivation}$$

 $\begin{array}{lll} \Theta, \Theta' \vdash P \ type^+ & By \ i.h. \\ \Theta \vdash N \ type^- & Subderivation \\ \Theta, \Theta' \vdash N \ type^- & By \ i.h. \end{array}$

 $\blacksquare \Theta, \Theta' \vdash P \rightarrow N \text{ type}^- By Twfarrow}$

• Case $\begin{array}{c} \Theta \vdash P \text{ type}^+ \\ \hline \Theta \vdash \uparrow P \text{ type}^- \end{array} \text{ Twfshift} \uparrow$ $\begin{array}{c} \Theta \vdash P \text{ type}^+ & \text{Subderivation} \\ \Theta, \Theta' \vdash P \text{ type}^+ & \text{By i.h.} \end{array}$ $\begin{array}{c} \blacksquare \\ \blacksquare \\ \blacksquare \\ \Theta, \Theta' \vdash \uparrow P \text{ type}^- & \text{By Twfshift} \\ \end{array}$

Lemma A.3 (Pushing uvars right in declarative judgment). Let $\Theta[\Theta_M]$ abbreviate $\Theta_L, \Theta_M, \Theta_R$. Then if $\Theta[\alpha, \Theta_M] \vdash A \leq^{\pm} B$, $\Theta[\Theta_M, \alpha] \vdash A \leq^{\pm} B$.

Proof. By rule induction on $\Theta[\alpha, \Theta_M] \vdash A \leq^{\pm} B$.

• Case
$$\frac{\Theta[\alpha, \Theta_M] \vdash \beta \text{ type}^+}{\Theta[\alpha, \Theta_M] \vdash \beta \leq^+ \beta} \leq^{\pm} \mathsf{Drefl}$$

 $\begin{array}{ll} & \Theta[\alpha,\Theta_{M}]\vdash\beta \ type^{+} & Subderivation \\ & \Theta[\Theta_{M},\alpha]\vdash\beta \ type^{+} & By \ Lemma \ A.1 \ (Pushing \ uvars \ right \ preserves \ w.f.) \\ & & & \\ &$

• Case
$$\frac{\Theta[\alpha,\Theta_M] \vdash M \leq^{-} \mathsf{N} \quad \Theta[\alpha,\Theta_M] \vdash \mathsf{N} \leq^{-} M}{\Theta[\alpha,\Theta_M] \vdash \downarrow \mathsf{N} \leq^{+} \downarrow \mathsf{M}} \leq^{\pm} \mathsf{Dshift} \downarrow$$

 $\begin{array}{ll} \Theta[\alpha, \Theta_{M}] \vdash M \leq^{-} \mathsf{N} & \text{Subderivation} \\ \Theta[\Theta_{M}, \alpha] \vdash M \leq^{-} \mathsf{N} & \text{By i.h.} \\ \Theta[\alpha, \Theta_{M}] \vdash \mathsf{N} \leq^{-} \mathsf{M} & \text{Subderivation} \\ \Theta[\Theta_{M}, \alpha] \vdash \mathsf{N} \leq^{-} \mathsf{M} & \text{By i.h.} \\ \Theta[\Theta_{M}, \alpha] \vdash \downarrow \mathsf{N} \leq^{+} \downarrow \mathsf{M} & \text{By} \leq^{\pm} \mathsf{Dshift} \downarrow \end{array}$

6

• Case
$$\frac{\Theta_{L}, \alpha, \Theta_{M}, \Theta_{R}, \beta \vdash N \leq^{-} M}{\Theta_{L}, \alpha, \Theta_{M}, \Theta_{R} \vdash N \leq^{-} \forall \beta. M} \leq^{\pm} \mathsf{D} \mathsf{forallr}$$

	$\Theta_{L}, lpha, \Theta_{M}, \Theta_{R}, eta dash N \leq^{-} M$	Subderivation
	$\Theta_L, \Theta_M, lpha, \Theta_R, eta dash N \leq^- M$	By i.h.
67	$\Theta_L, \Theta_M, lpha, \Theta_R \vdash N \leq^- orall eta. M$	$By \leq^{\pm} Dforallr$

• Case

$$\begin{array}{l} \Theta[\alpha,\Theta_{M}] \vdash P \text{ type}^{+} \qquad \Theta[\alpha,\Theta_{M}] \vdash [P/\beta]N \leq^{-} M \\ \Theta[\alpha,\Theta_{M}] \vdash P \text{ type}^{+} \qquad \text{Subderivation} \\ \Theta[\alpha,\Theta_{M}] \vdash P \text{ type}^{+} \qquad \text{By Lemma A.1 (Pushing uvars right preserves w.f.)} \\ \Theta[\alpha,\Theta_{M}] \vdash [P/\beta]N \leq^{-} M \qquad \text{Subderivation} \\ \Theta[\Theta_{M},\alpha] \vdash [P/\beta]N \leq^{-} M \qquad \text{By i.h.} \\ \blacksquare \qquad \Theta[\Theta_{M},\alpha] \vdash \forall \beta.N \leq^{-} M \qquad \text{By } \leq^{\pm} \text{Dforalll} \\ \hline \bullet \text{ Case } \qquad \Theta \vdash Q \leq^{+} P \qquad \Theta \vdash N \leq^{-} M \\ \Theta[\alpha,\Theta_{M}] \vdash Q \leq^{+} P \qquad \text{Subderivation} \\ \Theta[\alpha,\Theta_{M}] \vdash Q \leq^{+} P \qquad \text{Subderivation} \\ \Theta[\alpha,\Theta_{M}] \vdash Q \leq^{+} P \qquad \text{Subderivation} \\ \Theta[\alpha,\Theta_{M}] \vdash N \leq^{-} M \qquad \text{Subderivation} \\ \Theta[\alpha,\Theta_{M$$

 $\begin{array}{ll} \Theta[\alpha,\Theta_{M}]\vdash N\leq^{-}M & \text{Subderivation} \\ \Theta[\Theta_{M},\alpha]\vdash N\leq^{-}M & \text{By i.h.} \\ \hline & & \Theta[\Theta_{M},\alpha]\vdash P\rightarrow N\leq^{-}Q\rightarrow M & \text{By}\leq^{\pm}\mathsf{Darrow} \end{array}$

• Case
$$\frac{\Theta \vdash Q \leq^{+} P \quad \Theta \vdash P \leq^{+} Q}{\Theta \vdash \uparrow P \leq^{-} \uparrow Q} \leq^{\pm} \mathsf{Dshift} \uparrow$$

 $\begin{array}{lll} & \Theta[\alpha,\Theta_{M}]\vdash Q\leq^{+}\mathsf{P} & \text{Subderivation} \\ & \Theta[\Theta_{M},\alpha]\vdash Q\leq^{+}\mathsf{P} & \text{By i.h.} \\ & \Theta[\alpha,\Theta_{M}]\vdash\mathsf{P}\leq^{+}Q & \text{Subderivation} \\ & \Theta[\Theta_{M},\alpha]\vdash\mathsf{P}\leq^{+}Q & \text{By i.h.} \end{array}$

Lemma A.4 (Declarative subtyping weakening). *If* $\Theta \vdash A \leq^{\pm} B$ *then* $\Theta, \Theta' \vdash A \leq^{\pm} B$. *Proof.* By rule induction on $\Theta \vdash A \leq^{\pm} B$.

• Case
$$\begin{array}{l} \displaystyle \underset{\Theta \vdash \alpha \ type^{+}}{\Theta \vdash \alpha \leq^{+} \alpha} \leq^{\pm} \mathsf{Drefl} \\ \\ \displaystyle \underset{\Theta,\Theta'\vdash \alpha \ type^{+}}{\Theta,\Theta'\vdash \alpha \ type^{+}} \quad & \mathsf{Subderivation} \\ \\ \displaystyle \underset{\Theta,\Theta'\vdash \alpha \leq^{+} \alpha}{\otimes} \quad & \mathsf{By \ Lemma \ A.2} \ (\mathsf{Term \ well-formedness \ weakening}) \\ \\ \\ \displaystyle \underset{\Theta,\Theta'\vdash \alpha \leq^{+} \alpha }{\overset{\to}{\otimes}} \quad & \mathsf{By \ } \leq^{\pm} \mathsf{Drefl} \end{array}$$

• Case

$$\begin{array}{l} \Theta \vdash M \leq^{-} N \qquad \Theta \vdash N \leq^{-} M \\ \Theta \vdash J N \leq^{+} J M \\ \Theta \vdash D \\ \Theta \vdash N \\ \Theta$$

$$\frac{\Theta \vdash Q \leq^+ P \quad \Theta \vdash P \leq^+ Q}{\Theta \vdash \uparrow P \leq^- \uparrow Q} \leq^{\pm} \mathsf{Dshift} \uparrow$$

	$\Theta \vdash Q \leq^+ P$	Subderivation
	$\Theta, \Theta' \vdash Q \leq^+ P$	By i.h.
	$\Theta \vdash P \leq^+ Q$	Subderivation
	$\Theta, \Theta' \vdash P \leq^+ Q$	By i.h.
RF 1	$\Theta, \Theta' \vdash \uparrow P \leq^{-} \uparrow Q$	$By \leq^{\pm} Dshift \uparrow$

B' Declarative subtyping

Lemma B.1 (Declarative subtyping is reflexive). *If* $\Theta \vdash A$ type^{\pm} *then* $\Theta \vdash A \leq^{\pm} A$.

Proof. By rule induction on $\Theta \vdash A$ type[±].

• Case

$$\frac{\alpha \in UV(\Theta)}{\Theta \vdash \alpha type^{+}} Twfuvar$$

$$\Theta \vdash \alpha type^{+} Assumption$$

$$\Theta \vdash \alpha \leq^{+} \alpha By \leq^{\pm} Drefl$$
• Case

$$\frac{\Theta \vdash N type^{-}}{\Theta \vdash \downarrow N type^{+}} Twfshift \downarrow$$

$$\Theta \vdash N type^{-} Subderivation$$

$$\Theta \vdash N \leq^{-} N By i.h.$$

$$\Theta \vdash \downarrow N \leq^{+} \downarrow N By \leq^{\pm} Dshift \downarrow$$
• Case

$$\frac{\Theta, \alpha \vdash N type^{-}}{\Theta \vdash \forall \alpha. N type^{-}} Twfforall$$

$$\Theta, \alpha \vdash N type^{-} N By i.h.$$

$$\alpha \in UV(\Theta, \alpha) By definition of UV$$

$$\Theta, \alpha \vdash \alpha type^{+} By Twfuvar$$

$$\Theta, \alpha \vdash \forall \alpha. N \leq^{-} N By \leq^{\pm} Dforall$$

$$\Theta \vdash \forall \alpha. N \leq^{-} N By \leq^{\pm} Dforall$$

$$\Theta \vdash \forall \alpha. N \leq^{-} \forall \alpha. N By \leq^{\pm} Dforall$$

$$\Theta \vdash \forall \alpha. N \leq^{-} \forall \alpha. N By \leq^{\pm} Dforall$$
• Case

$$\frac{\Theta \vdash P type^{+} \Theta \vdash N type^{-}}{\Theta \vdash P \rightarrow N type^{-}} Twfarrow$$

 $\begin{array}{lll} \Theta \vdash P \ type^+ & Subderivation \\ \Theta \vdash P \leq^+ P & By \ i.h. \\ \Theta \vdash N \ type^- & Subderivation \\ \Theta \vdash N \leq^- N & By \ i.h. \end{array}$

• Case
$$\frac{\Theta \vdash P \text{ type}^+}{\Theta \vdash \uparrow P \text{ type}^-} \text{ Twfshift} \uparrow$$

Lemma B.2 (Declarative substitution w.f.). *If* $\Theta_L, \Theta_R \vdash P$ type⁺ and $\Theta_L, \alpha, \Theta_R \vdash A$ type[±], then $\Theta_L, \Theta_R \vdash [P/\alpha]A$ type[±].

Proof. By rule induction on Θ_L , α , $\Theta_R \vdash A$ type[±].

• Case $\frac{\beta \in UV(\Theta_L, \alpha, \Theta_R)}{\Theta_L, \alpha, \Theta_R \vdash \beta \text{ type}^+} \text{ Twfuvar}$

Case $\beta = \alpha$:

$$\begin{array}{ll} [P/\alpha]\beta = P & & \text{By definition of } [-]-\\ & & \Theta_L, \Theta_R \vdash P \ \text{type}^+ & & \text{Assumption} \end{array}$$

Case $\beta \neq \alpha$:

$$\begin{split} & [\mathsf{P}/\alpha]\beta = \beta & & \text{By definition of } [-]-\\ & \beta \in UV(\Theta_L, \alpha, \Theta_R) & & \text{Subderivation} \\ & \beta \in UV(\Theta_L, \Theta_R) & & \text{Since } \beta \neq \alpha \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ &$$

• Case
$$\frac{\Theta_L, \alpha, \Theta_R \vdash N \text{ type}^-}{\Theta_L, \alpha, \Theta_R \vdash \downarrow N \text{ type}^+} \text{ Twfshift}_{\downarrow}$$

$$\begin{array}{lll} & \Theta_{L}, \Theta_{R} \vdash P \ type^{+} & Assumption \\ & \Theta_{L}, \alpha, \Theta_{R} \vdash N \ type^{-} & Subderivation \\ & \Theta_{L}, \Theta_{R} \vdash [P/\alpha]N \ type^{-} & By \ i.h. \\ & \Theta_{L}, \Theta_{R} \vdash \downarrow [P/\alpha]N \ type^{+} & By \ Twfshift \downarrow \\ & & & \Theta_{L}, \Theta_{R} \vdash [P/\alpha] \downarrow N \ type^{+} & By \ definition \ of \ [-]- \end{array}$$

• Case $\begin{array}{c} \Theta_{L}, \alpha, \Theta_{R}, \beta \vdash N \text{ type}^{-} \\ \hline \Theta_{L}, \alpha, \Theta_{R} \vdash \forall \beta. N \text{ type}^{-} \end{array} \text{ Twfforall} \\ \\ \Theta_{L}, \Theta_{R}, \Theta_{R} \vdash P \text{ type}^{+} & \text{Assumption} \\ \Theta_{L}, \alpha, \Theta_{R}, \beta \vdash N \text{ type}^{-} & \text{Subderivation} \\ \Theta_{L}, \Theta_{R}, \beta \vdash P \text{ type}^{+} & \text{By Lemma A.2 (Term well-formedness weakening)} \\ \\ \Theta_{L}, \Theta_{R}, \beta \vdash [P/\alpha]N \text{ type}^{-} & \text{By i.h.} \\ \\ \Theta_{L}, \Theta_{R} \vdash \forall \beta. [P/\alpha]N \text{ type}^{-} & \text{By Twfforall} \\ \hline \blacksquare & \Theta_{L}, \Theta_{R} \vdash [P/\alpha] \forall \beta. N \text{ type}^{-} & \text{By definition of } [-]- \end{array}$

• Case
$$\frac{\Theta_{L}, \alpha, \Theta_{R} \vdash Q \text{ type}^{+} \quad \Theta_{L}, \alpha, \Theta_{R} \vdash N \text{ type}^{-}}{\Theta_{L}, \alpha, \Theta_{R} \vdash Q \rightarrow N \text{ type}^{-}} \text{ Twfarrow}$$

$$\begin{array}{cccc} \Theta_{L}, \Theta_{R} \vdash P \ type^{+} & Assumption \\ \Theta_{L}, \alpha, \Theta_{R} \vdash Q \ type^{+} & Subderivation \\ \Theta_{L}, \Theta_{R} \vdash [P/\alpha]Q \ type^{+} & By \ i.h. \\ \Theta_{L}, \alpha, \Theta_{R} \vdash N \ type^{-} & Subderivation \\ \Theta_{L}, \Theta_{R} \vdash [P/\alpha]N \ type^{-} & By \ i.h. \\ \Theta_{L}, \Theta_{R} \vdash [P/\alpha]Q \rightarrow [P/\alpha]N \ type^{-} & By \ Twfarrow \\ \blacksquare & \Theta_{L}, \Theta_{R} \vdash [P/\alpha](Q \rightarrow N) \ type^{-} & By \ definition \ of \ [-]- \end{array}$$

• **Case**
$$\frac{\Theta_{L}, \alpha, \Theta_{R} \vdash Q \text{ type}^{+}}{\Theta_{L}, \alpha, \Theta_{R} \vdash \uparrow Q \text{ type}^{-}} \text{ Twfshift} \uparrow$$

 $\begin{array}{lll} & \Theta_{L}, \Theta_{R} \vdash P \ type^{+} & Assumption \\ & \Theta_{L}, \alpha, \Theta_{R} \vdash Q \ type^{+} & Subderivation \\ & \Theta_{L}, \Theta_{R} \vdash [P/\alpha]Q \ type^{+} & By \ i.h. \\ & \Theta_{L}, \Theta_{R} \vdash \uparrow [P/\alpha]Q \ type^{-} & By \ Twfshift\uparrow \\ & & & \Theta_{L}, \Theta_{R} \vdash [P/\alpha]\uparrow Q \ type^{-} & By \ definition \ of \ [-]- \end{array}$

Lemma B.3 (Declarative subtyping is stable under substitution). If $\Theta_L, \Theta_R \vdash P$ type⁺, then:

- If $\Theta_L, \alpha, \Theta_R \vdash Q$ type⁺, $\Theta_L, \alpha, \Theta_R \vdash R$ type⁺, and $\Theta_L, \alpha, \Theta_R \vdash Q \leq^+ R$, then $\Theta_L, \Theta_R \vdash [P/\alpha]Q \leq^+ [P/\alpha]R$.
- *If* $\Theta_L, \alpha, \Theta_R \vdash N$ type⁻, $\Theta_L, \alpha, \Theta_R \vdash M$ type⁻, and $\Theta_L, \alpha, \Theta_R \vdash N \leq ^- M$, then $\Theta_L, \Theta_R \vdash [P/\alpha]N \leq ^- [P/\alpha]M$.

Proof. By mutual rule induction on Θ_L , α , $\Theta_R \vdash Q \leq^+ R$ and Θ_L , α , $\Theta_R \vdash N \leq^- M$.

• Case $\frac{\Theta_L, \alpha, \Theta_R \vdash \beta \text{ type}^+}{\Theta_L, \alpha, \Theta_R \vdash \beta \leq^+ \beta} \leq^{\pm} \mathsf{Drefl}$

Case $\beta = \alpha$:

	$[P/\alpha]\beta = P$	By definition of [–]–
	$\Theta_L, \Theta_R \vdash P \ type^+$	Assumption
RP 1	$\Theta_{L}, \Theta_{R} \vdash P \leq^{+} P$	By Lemma B.1 (Declarative subtyping is reflexive)

• Case
$$\frac{\Theta_L, \alpha, \Theta_R \vdash M \leq^- N \quad \Theta_L, \alpha, \Theta_R \vdash N \leq^- M}{\Theta_L, \alpha, \Theta_R \vdash \downarrow N \leq^+ \downarrow M} \leq^{\pm} \mathsf{Dshift} \downarrow$$

	$\Theta_L, \Theta_R \vdash P \ type^+$	Assumption
	$\Theta_{L}, \alpha, \Theta_{R} \vdash \downarrow N \text{ type}^{+}$	//
	$\Theta_L, \alpha, \Theta_R \vdash N \text{ type}^-$	Inversion (Twfshift \downarrow)
	$\Theta_L, \alpha, \Theta_R \vdash \downarrow M \text{ type}^+$	Assumption
	$\Theta_L, \alpha, \Theta_R \vdash M \text{ type}^-$	Inversion (Twfshift))
	$\Theta_L, lpha, \Theta_R \vdash M \leq^- N$	Subderivation
	$\Theta_L, \Theta_R \vdash [P/\alpha]M \leq^- [P/\alpha]N$	By i.h.
	$\Theta_{L}, lpha, \Theta_{R} dash M \leq^{-} N$	Subderivation
	$\Theta_{\mathrm{L}}, \Theta_{\mathrm{R}} \vdash [\mathrm{P}/lpha] \mathrm{N} \leq^{-} [\mathrm{P}/lpha] \mathrm{M}$	//
ß	$\Theta_L, \Theta_R \vdash {\downarrow}[P/\alpha]N \leq^+ {\downarrow}[P/\alpha]M$	$By \leq^{\pm} Dshift \!\!\!\downarrow$
RF .	$\Theta_L, \Theta_R \vdash [P/\alpha] {\downarrow} N \leq^+ [P/\alpha] {\downarrow} M$	By definition of [—]—

• Case
$$\frac{\Theta_{L}, \alpha, \Theta_{R}, \beta \vdash N \leq^{-} M}{\Theta_{L}, \alpha, \Theta_{R} \vdash N \leq^{-} \forall \beta. M} \leq^{\pm} \mathsf{D} \mathsf{forallr}$$

	$\begin{array}{c} \Theta_{L}, \Theta_{R} \vdash P \ type^{+} \\ \Theta_{L}, \alpha, \Theta_{R} \vdash N \ type^{-} \\ \Theta_{L}, \alpha, \Theta_{R} \vdash \forall \beta. M \ type^{-} \end{array}$	Assumption "
	$\Theta_L, \Theta_R, \beta \vdash P \ type^+$	By Lemma A.2 (Term well-formedness weakening)
	$\Theta_{L}, \alpha, \Theta_{R}, \beta \vdash N \text{ type}^{-}$	By Lemma A.2 (Term well-formedness weakening)
	$\Theta_{L}, \alpha, \Theta_{R}, \beta \vdash M \text{ type}^{-}$	Inversion (Twfforall)
	$\Theta_{L}, lpha, \Theta_{R}, eta dash N \leq^{-} M$	Subderivation
	$\Theta_{\mathrm{L}}, \Theta_{\mathrm{R}}, \beta \vdash [\mathrm{P}/\alpha]\mathrm{N} \leq^{-} [\mathrm{P}/\alpha]\mathrm{M}$	By i.h.
RF RF	$\Theta_{L}, \Theta_{R} \vdash [P/\alpha]N \leq^{-} \forall \beta. [P/\alpha]M$	$By \leq^{\pm} Dforallr$
B	$\Theta_{L}, \Theta_{R} \vdash [P/\alpha]N \leq^{-} [P/\alpha] \forall \beta. M$	By definition of [–]–

$$\begin{array}{c} \bullet \ \mbox{Case} \\ \underline{\Theta_{L}, \alpha, \Theta_{R} \vdash R \leq^{+} Q} \qquad \underline{\Theta_{L}, \alpha, \Theta_{R} \vdash N \leq^{-} M} \\ \underline{\Theta_{L}, \alpha, \Theta_{R} \vdash Q \rightarrow N \leq^{-} R \rightarrow M} \\ \leq^{\pm} \mbox{Darrow} \\ \hline\\ \underline{\Theta_{L}, \alpha, \Theta_{R} \vdash Q \rightarrow N type^{-}} \\ \underline{\Theta_{L}, \alpha, \Theta_{R} \vdash Q \rightarrow N type^{-}} \\ \underline{\Theta_{L}, \alpha, \Theta_{R} \vdash R \rightarrow M type^{-}} \\ \hline\\ \underline{\Theta_{L}, \alpha, \Theta_{R} \vdash R \downarrow Pe^{+}} \\ \underline{\Theta_{L}, \alpha, \Theta_{R} \vdash R type^{+}} \\ \underline{\Theta_{L}, \alpha, \Theta_{R} \vdash R Q type^{+}} \\ \\ \underline{\Theta_{L}, \alpha, \Theta_{R} \vdash R \leq^{+} Q} \\ \underline{\Theta_{L}, \alpha, \Theta_{R} \vdash R \leq^{+} Q} \\ \underline{\Theta_{L}, \alpha, \Theta_{R} \vdash R \leq^{+} P/\alpha]Q} \\ \hline\\ \underline{\Theta_{L}, \alpha, \Theta_{R} \vdash R \leq^{+} P/\alpha]Q \\ \hline\\ \underline{\Theta_{L}, \alpha, \Theta_{R} \vdash N type^{-}} \\ \underline{\Theta_{L}, \alpha, \Theta_{R} \vdash N type^{-}} \\ \underline{\Theta_{L}, \alpha, \Theta_{R} \vdash N type^{-}} \\ \\ \underline{\Theta_{L}, \alpha, \Theta_{R} \vdash N \leq^{-} M} \\ \underline{\Theta_{L}, \alpha, \Theta_{R} \vdash N \leq^{-} M} \\ \underline{\Theta_{L}, \Theta_{R} \vdash [P/\alpha]N \leq^{-} [P/\alpha]M \\ \underline{\Theta_{L}, \Theta_{R} \vdash [P/\alpha]Q \rightarrow [P/\alpha]N \leq^{-} [P/\alpha]R \rightarrow [P/\alpha]M \\ \underline{\Theta_{L}, \Theta_{R} \vdash [P/\alpha](Q \rightarrow N) \leq^{-} [P/\alpha](R \rightarrow M) \\ \end{array}$$

• Case $\begin{array}{l} \displaystyle \underbrace{\Theta_L, \alpha, \Theta_R \vdash R \leq^+ Q}_{\Theta_L, \alpha, \Theta_R \vdash Q} \stackrel{\Theta_L, \alpha, \Theta_R \vdash Q \leq^+ R}{\Theta_L, \alpha, \Theta_R \vdash \uparrow Q \leq^- \uparrow R} \leq^{\pm} \mathsf{Dshift} \uparrow \\ \\ \displaystyle \underbrace{\Theta_L, \Theta_R \vdash P \ type^+}_{\Theta_L, \alpha, \Theta_R \vdash \uparrow Q \ type^-} \stackrel{"}{H_{\alpha, \alpha, \Theta_R} \vdash Q \ type^+} \stackrel{Thversion}{Inversion} (\mathsf{Twfshift} \uparrow) \\ \\ \displaystyle \underbrace{\Theta_L, \alpha, \Theta_R \vdash \uparrow R \ type^-}_{\Theta_L, \alpha, \Theta_R \vdash R \ type^+} \quad Inversion \ (\mathsf{Twfshift} \uparrow) \end{array}$

 $\begin{array}{lll} \Theta_{L}, \Theta_{R} \vdash [P/\alpha]R \leq^{+} [P/\alpha]Q & \text{By i.h.} \\ \Theta_{L}, \Theta_{R} \vdash [P/\alpha]Q \leq^{+} [P/\alpha]R & '' \\ & & \\ \blacksquare & \Theta_{L}, \Theta_{R} \vdash \uparrow [P/\alpha]Q \leq^{-} \uparrow [P/\alpha]R & \text{By} \leq^{\pm} \text{Dshift} \uparrow \\ & & \\ \blacksquare & \Theta_{L}, \Theta_{R} \vdash [P/\alpha]\uparrow Q \leq^{-} [P/\alpha]\uparrow R & \text{By definition of } [-] - \end{array}$

Lemma B.4 (Symmetry of positive declarative subtyping). *If* $\Theta \vdash P \leq^+ Q$ *then* $\Theta \vdash Q \leq^+ P$ *by a derivation of equal height.*

Proof. By rule induction on $\Theta \vdash P \leq^+ Q$.

• Case $\frac{\Theta \vdash \alpha \text{ type}^+}{\Theta \vdash \alpha \leq^+ \alpha} \leq^{\pm} \mathsf{Drefl}$

• Case
$$\frac{\Theta \vdash M \leq^{-} N \quad \Theta \vdash N \leq^{-} M}{\Theta \vdash {\downarrow} N \leq^{+} {\downarrow} M} \leq^{\pm} \mathsf{Dshift}{\downarrow}$$

 $\begin{array}{ll} \Theta \vdash \mathsf{N} \leq^- \mathsf{M} & \text{Subderivation} \\ \Theta \vdash \mathsf{M} \leq^- \mathsf{N} & '' \\ \mathfrak{s}^{\approx} & \Theta \vdash {\downarrow} \mathsf{M} \leq^+ {\downarrow} \mathsf{N} & \text{By} \leq^{\pm} \mathsf{Dshift} {\downarrow} \end{array}$

B'.1 Isomorphic types

Lemma B.5 (Mutual subtyping substitution). Given Θ , $\vec{\alpha} \vdash \vec{P}$ type⁺ and Θ , $\vec{\beta} \vdash \vec{Q}$ type⁺:

• If:

1.	$\Theta, \vec{\alpha} \vdash R type^+$
2.	$\Theta, \beta \vdash S \text{ type}^+$
З.	$\Theta, \vec{\alpha} \vdash R \leq^+ [\vec{P/\beta}]S$
4.	$\Theta, \vec{\beta} \vdash S \leq^+ [\vec{Q/\alpha}]R$

then:

then:

1. $\Theta, \vec{\alpha} \vdash M$ type⁻ 2. $\Theta, \vec{\beta} \vdash N$ type⁻ 3. $\Theta, \vec{\alpha} \vdash [\vec{P}/\vec{\beta}]N \leq^{-} M$ 4. $\Theta, \vec{\beta} \vdash [\vec{Q}/\alpha]M <^{-} N$

• If:

Proof. By strong mutual rule induction on the pair of Θ , $\vec{\alpha} \vdash R \leq^+ [\vec{P}/\vec{\beta}]S$ and Θ , $\vec{\beta} \vdash S \leq^+ [\vec{Q}/\vec{\alpha}]R$, and the pair of Θ , $\vec{\alpha} \vdash [\vec{P}/\vec{\beta}]N \leq^- M$ and Θ , $\vec{\beta} \vdash [\vec{Q}/\vec{\alpha}]M \leq^- N$.

• Case $\frac{\Theta, \vec{\alpha} \vdash \gamma \text{ type}^+}{\Theta, \vec{\alpha} \vdash \gamma \leq^+ \gamma} \leq^{\pm} \mathsf{Drefl} \quad \frac{\Theta, \vec{\beta} \vdash \gamma \text{ type}^+}{\Theta, \vec{\beta} \vdash \gamma \leq^+ \gamma} \leq^{\pm} \mathsf{Drefl}$

By the \leq^{\pm} Drefl rule, we must have the same universal variable on both sides of both judgments.

 $[\overrightarrow{P/\beta}]S = \gamma$ Since we have an instance of \leq^{\pm} Drefl $P_i = \gamma$ For all P_i such that $\beta_i \in \vec{\beta}$ and $\beta_i \in FUV(S)$ F $[\overrightarrow{Q/\alpha}]R=\gamma \quad \text{Since we have an instance of } \leq^{\pm} \mathsf{Drefl}$ $Q_i = \gamma$ For all Q_i such that $\alpha_i \in \vec{\alpha}$ and $\alpha_i \in FUV(R)$

• Case $\frac{\Theta, \vec{\alpha} \vdash [\overrightarrow{P/\beta}]N \leq^{-} M \quad \Theta, \vec{\alpha} \vdash M \leq^{-} [\overrightarrow{P/\beta}]N}{\Theta, \vec{\alpha} \vdash \downarrow M \leq^{+} [\overrightarrow{P/\beta}] \downarrow N} \leq^{\pm} \mathsf{Dshift} \downarrow$

If we have an instance of \leq^{\pm} Dshift \downarrow , then the types on both sides of the other judgment must also start with \downarrow , so we must have another instance of \leq^{\pm} Dshift \downarrow :

$$\frac{\Theta, \vec{\beta} \vdash [\overrightarrow{Q/\alpha}]M \leq^{-} \mathsf{N} \quad \Theta, \vec{\beta} \vdash \mathsf{N} \leq^{-} [\overrightarrow{Q/\alpha}]M}{\Theta, \vec{\beta} \vdash \downarrow \mathsf{N} \leq^{+} [\overrightarrow{Q/\alpha}]\downarrow \mathsf{M}} \leq^{\pm} \mathsf{Dshift}\downarrow$$

	$\Theta, \vec{\alpha} \vdash M \text{ type}^-$	Inversion (Twfshift↓)
	$\Theta, \vec{\beta} \vdash N \text{ type}^-$	Inversion (Twfshift)
	$\Theta, \vec{lpha} \vdash [\overrightarrow{P/\beta}]N \leq^{-} M$	Subderivation
	$\Theta, \vec{\beta} \vdash [\overrightarrow{Q/\alpha}]M \leq^{-} N$	//
	$P_i = \gamma$	For all P_i such that $\beta_i \in \vec{\beta}$ and $\beta_i \in FUV(N)$ (by i.h.)
	$Q_i = \gamma$	For all Q_i such that $\alpha_i \in \vec{\alpha}$ and $\alpha_i \in FUV(M)$ (by i.h.)
3	$P_i = \gamma$	For all P_i such that $\beta_i \in \vec{\beta}$ and $\beta_i \in FUV(\downarrow N)$ (by definition of FUV)
3	$Q_i = \gamma$	For all Q_i such that $\alpha_i \in \vec{\alpha}$ and $\alpha_i \in FUV(\downarrow M)$ (by definition of FUV)

$$\begin{array}{c} \textbf{Case} \quad \displaystyle \frac{\Theta, \vec{\alpha}, \gamma \vdash [\overrightarrow{P/\beta}] N \leq^{-} M}{\Theta, \vec{\alpha} \vdash [\overrightarrow{P/\beta}] N \leq^{-} \forall \gamma. M} \leq^{\pm} \mathsf{D} \mathsf{forally} \end{array}$$

By induction on the number of consecutive instances of \leq^{\pm} Dforallr in the derivation of the second judgment.

- Case
$$\frac{\Theta, \vec{\beta} \vdash R \text{ type}^+ \quad \Theta, \vec{\beta} \vdash [\overline{Q/\alpha}, R/\gamma]M \leq^- N}{\Theta, \vec{\beta} \vdash \forall \gamma. [\overline{Q/\alpha}]M \leq^- N} \leq^{\pm} D \text{foralll}$$

This is the base case of the inner induction. Our use of the outer induction hypothesis in this case is why we needed to perform a strong rule induction.

 $\begin{array}{ll} \Theta, \overrightarrow{\alpha}, \gamma \vdash M \ \text{type}^- & \text{Inversion (Twfforall)} \\ \Theta, \overrightarrow{\beta} \vdash N \ \text{type}^- & \text{Assumption} \end{array}$

- Case $\frac{\Theta, \overrightarrow{\beta}, \delta \vdash [\overrightarrow{Q/\alpha}] \forall \gamma. M \leq^{-} N'}{\Theta, \overrightarrow{\beta} \vdash [\overrightarrow{Q/\alpha}] \forall \gamma. M \leq^{-} \forall \delta. N'} \leq^{\pm} \mathsf{D} \mathsf{forallr}$

This is the inductive step of the inner induction. Here we have n = k + 1 consecutive instances of \leq^{\pm} Dforallr in the derivation of the second judgment.

• Case
$$\frac{\Theta, \vec{\alpha} \vdash R \, type^+ \quad \Theta, \vec{\alpha} \vdash [\overrightarrow{P/\beta}, R/\gamma]N \leq^- M}{\Theta, \vec{\alpha} \vdash \forall \gamma. [\overrightarrow{P/\beta}]N \leq^- M} \leq^{\pm} \mathsf{D} \mathsf{foralll}$$

3

3

We perform a case split over the derivation of the second judgment.

$$- \begin{array}{c} \textbf{Case} \\ \frac{\Theta, \overrightarrow{\beta} \vdash S \text{ type}^+ \quad \Theta, \overrightarrow{\beta} \vdash [\overrightarrow{Q/\alpha}, S/\delta]M' \leq^- \forall \gamma. N}{\Theta, \overrightarrow{\beta} \vdash \forall \delta. [\overrightarrow{Q/\alpha}]M' \leq^- \forall \gamma. N} \leq^{\pm} \text{Dforalll} \end{array}$$

$$\begin{array}{cccc} \Theta, \overrightarrow{\alpha}, \delta \vdash M' \ type^{-} & \text{Inversion (Twfforall)} \\ \Theta, \overrightarrow{\beta}, \gamma \vdash N \ type^{-} & '' \\ \Theta, \overrightarrow{\alpha} \vdash [\overrightarrow{P/\beta}, R/\gamma] N \leq^{-} \forall \delta. M' & \text{Subderivation} \\ \Theta, \overrightarrow{\beta} \vdash [\overrightarrow{Q/\alpha}, S/\delta] M' \leq^{-} \forall \gamma. N & '' \\ \Theta, \overrightarrow{\alpha}, \delta \vdash [\overrightarrow{P/\beta}, R/\gamma] N \leq^{-} M' & \text{Inversion } (\leq^{\pm} \mathsf{D} \mathsf{forallr}) \\ \Theta, \overrightarrow{\beta}, \gamma \vdash [\overrightarrow{Q/\alpha}, S/\delta] M' \leq^{-} N & '' \\ P_i = \eta & \text{For all } P_i \ \text{such that } \beta_i \in \overrightarrow{\beta}, \gamma \ \text{and } \beta_i \in \mathsf{FUV}(N) \ (by \ i.h.) \\ Q_i = \eta & \text{For all } Q_i \ \text{such that } \alpha_i \in \overrightarrow{\alpha}, \delta \ \text{and } \alpha_i \in \mathsf{FUV}(M') \ (by \ i.h.) \\ P_i = \eta & \text{For all } P_i \ \text{such that } \beta_i \in \overrightarrow{\beta} \ \text{and } \beta_i \in \mathsf{FUV}(\forall \gamma. N) \\ (by \ definition \ of \ \mathsf{FUV}) \end{array}$$

$$\begin{array}{ll} Q_i = \eta & \quad \text{For all } Q_i \text{ such that } \alpha_i \in \vec{\alpha} \text{ and } \alpha_i \in \text{FUV}(\forall \delta. M') \\ & \quad \text{(by definition of FUV)} \end{array}$$

Here the application of the inductive hypothesis states that every universal variable in the arrays $\vec{\beta}, \gamma$ and $\vec{\alpha}, \delta$ that appears in the corresponding type is substituted by a universal variable (including γ and δ). As a result, the conclusion holds for just the universal variables in $\vec{\beta}$ and $\vec{\alpha}$.

$$\begin{array}{l} \textbf{Case} \\ \frac{\Theta, \overrightarrow{\beta}, \gamma \vdash [\overrightarrow{Q/\alpha}]M \leq^{-} \mathsf{N}}{\Theta, \overrightarrow{\beta} \vdash [\overrightarrow{Q/\alpha}]M \leq^{-} \forall \gamma. \mathsf{N}} \leq^{\pm} \mathsf{D} \mathsf{forallr} \end{array}$$

	$\Theta, ec{lpha} \vdash \mathcal{M}$ type ⁻	Assumption
	$\Theta, \overrightarrow{eta}, \gamma \vdash N \ type^-$	Inversion (Twfforall)
	$\Theta, \vec{lpha} \vdash [\overrightarrow{P/eta}, R/\gamma]N \leq^{-} M$	Subderivation
	$\Theta, ec{eta}, \gamma dash [ec{\mathrm{Q}/lpha}] M \leq^{-} N$	11
	$P_i = \delta$	For all P_i such that $\beta_i \in \vec{\beta}, \gamma$ and $\beta_i \in FUV(N)$ (by outer i.h.)
1 3	$P_i = \delta$	For all P_i such that $\beta_i \in \vec{\beta}$ and $\beta_i \in FUV(\forall \gamma. N)$
		(by definition of FUV)
ß	$Q_{i} = \delta$	For all Q_i such that $\alpha_i \in \vec{\alpha}$ and $\alpha_i \in FUV(M)$ (by outer i.h.)

• Case
$$\frac{\Theta, \vec{\alpha} \vdash R \leq^+ [\overrightarrow{P/\beta}]S \quad \Theta, \vec{\alpha} \vdash [\overrightarrow{P/\beta}]N \leq^- M}{\Theta, \vec{\alpha} \vdash [\overrightarrow{P/\beta}](S \to N) \leq^- R \to M} \leq^{\pm} \mathsf{Darrow}$$

If we have an instance of \leq^{\pm} Darrow, then the types on both sides of the other judgment must be function types, so we must have another instance of \leq^{\pm} Darrow:

$$\frac{\Theta, \vec{\beta} \vdash S \leq^{+} [\overrightarrow{Q/\alpha}]R \quad \Theta, \vec{\beta} \vdash [\overrightarrow{Q/\alpha}]M \leq^{-} N}{\Theta, \vec{\beta} \vdash [\overrightarrow{Q/\alpha}](R \to M) \leq^{-} S \to N} \leq^{\pm} \mathsf{Darrow}$$

$\Theta, \vec{\alpha} \vdash R \text{ type}^+ \\ \Theta, \vec{\beta} \vdash S \text{ type}^+ \\ \Theta, \vec{\alpha} \vdash R \leq^+ [\overline{P/\beta}]S$	Inversion (Twfarrow) Inversion (Twfarrow) Subderivation
$\Theta, \vec{\beta} \vdash S \leq^+ [\overrightarrow{Q/\alpha}]R$	<i>"</i>
$P_i = \gamma$	For all P_i such that $\beta_i \in \vec{\beta}$ and $\beta_i \in FUV(S)$ (by i.h.)
$Q_i = \gamma$	For all Q_i such that $\alpha_i \in \vec{\alpha}$ and $\alpha_i \in FUV(R)$ (by i.h.)
$\Theta, \vec{\alpha} \vdash M \text{ type}^-$	Inversion (Twfarrow)
$\Theta, \vec{\beta} \vdash N \ type^-$	Inversion (Twfarrow)
$\Theta, \vec{\alpha} \vdash [\overrightarrow{P/\beta}]N \leq^{-} M$	Subderivation
$\Theta, \overrightarrow{\beta} \vdash [\overrightarrow{Q/\alpha}]M \leq^{-} N$	11
$P_i = \gamma$	For all P_i such that $\beta_i \in \vec{\beta}$ and $\beta_i \in FUV(N)$ (by i.h.)
$Q_i = \gamma$	For all Q_i such that $\alpha_i\in \vec{\alpha}$ and $\alpha_i\in FUV(M)$ (by i.h.)
$P_i = \gamma$	For all P_i such that $\beta_i\in \vec\beta$ and $\beta_i\in FUV(S\to N)$

ß

137

_

(by definition of FUV)

$$Q_i = \gamma$$
 For all Q_i such that $\alpha_i \in \vec{\alpha}$ and $\alpha_i \in FUV(R \to M)$
(by definition of FUV)

• Case
$$\frac{\Theta, \vec{\alpha} \vdash [\overrightarrow{P/\beta}]S \leq^{+} R \quad \Theta, \vec{\alpha} \vdash R \leq^{+} [\overrightarrow{P/\beta}]S}{\Theta, \vec{\alpha} \vdash \uparrow R \leq^{-} [\overrightarrow{P/\beta}]\uparrow S} \leq^{\pm} \mathsf{Dshift}\uparrow$$

If we have an instance of $\leq^{\pm} D$ shift \uparrow , then the types on both sides of the other judgment must also start with \uparrow , so we must have another instance of $\leq^{\pm} D$ shift \uparrow :

$$\frac{\Theta, \vec{\beta} \vdash [\overrightarrow{Q/\alpha}] R \leq^{+} S \quad \Theta, \vec{\beta} \vdash S \leq^{+} [\overrightarrow{Q/\alpha}] R}{\Theta, \vec{\beta} \vdash \uparrow S \leq^{-} [\overrightarrow{Q/\alpha}] \uparrow R} \leq^{\pm} \mathsf{Dshift} \uparrow$$

	$\Theta, \vec{\alpha} \vdash R \ type^+$	Inversion (Twfshift↑)
	$\Theta, \vec{\beta} \vdash S \text{ type}^+$	Inversion (Twfshift ⁾
	$\Theta, \vec{\alpha} \vdash R \leq^+ [\overrightarrow{P/\beta}]S$	Subderivation
	$\Theta, \vec{\beta} \vdash S \leq^+ [\overrightarrow{Q/\alpha}]R$	11
	$P_i = \gamma$	For all P_i such that $\beta_i \in \vec{\beta}$ and $\beta_i \in FUV(S)$ (by i.h.)
	$Q_i = \gamma$	For all Q_i such that $\alpha_i \in \vec{\alpha}$ and $\alpha_i \in FUV(R)$ (by i.h.)
ß	$P_i = \gamma$	For all P_i such that $\beta_i \in \vec{\beta}$ and $\beta_i \in FUV(\uparrow S)$
		(by definition of FUV)
B	$Q_i = \gamma$	For all Q_i such that $\alpha_i \in \vec{\alpha}$ and $\alpha_i \in FUV(\uparrow R)$
		(by definition of FUV)

Lemma B.6 (Isomorphic types are the same size). If:

- 1. $\Theta \vdash A \text{ type}^+$
- 2. $\Theta \vdash B$ type⁺
- 3. $\Theta \vdash A \cong^{\pm} B$
- then $|A|_{NQ} = |B|_{NQ}$.

Proof. By rule induction on $\Theta \vdash A \leq^{\pm} B$ and $\Theta \vdash B \leq^{\pm} A$.

- Case $\frac{\Theta \vdash \gamma \, type^+}{\Theta \vdash \gamma \leq^+ \gamma} \leq^{\pm} \mathsf{Drefl} \quad \frac{\Theta \vdash \gamma \, type^+}{\Theta \vdash \gamma \leq^+ \gamma} \leq^{\pm} \mathsf{Drefl}$
- $\scriptstyle{\scriptstyle \scriptstyle \rm I\!S\! S} = \left|\gamma\right|_{\scriptstyle \rm NQ} = \left|\gamma\right|_{\scriptstyle \rm NQ} \quad {\rm Identical\ LHS\ and\ RHS}$

ß

• Case
$$\begin{array}{c} \Theta \vdash N \leq^{-} M \quad \Theta \vdash M \leq^{-} N \\ \hline \Theta \vdash \downarrow M \leq^{+} \downarrow N \end{array} \leq^{\pm} Dshift \downarrow \quad \begin{array}{c} \Theta \vdash M \leq^{-} N \quad \Theta \vdash N \leq^{-} M \\ \hline \Theta \vdash \downarrow N \text{ type}^{+} \quad Assumption \\ \hline \Theta \vdash M \text{ type}^{-} \quad Inversion (Twfshift \downarrow) \\ \hline \Theta \vdash N \text{ type}^{+} \quad Assumption \\ \hline \Theta \vdash N \text{ type}^{+} \quad Assumption \\ \hline \Theta \vdash N \text{ type}^{-} \quad Inversion (Twfshift \downarrow) \\ \end{array}$$

• Case
$$\frac{\Theta \vdash P \text{ type}^+ \quad \Theta \vdash [P/\alpha]M \leq^- N}{\Theta \vdash \forall \alpha. M \leq^- N} \leq^{\pm} \mathsf{D} \text{foralll} \quad \frac{\Theta, \alpha \vdash N \leq^- M}{\Theta \vdash N \leq^- \forall \alpha. M} \leq^{\pm} \mathsf{D} \text{forallr}$$

$\Theta \vdash P \ type^+$	Subderivation
$\Theta \vdash N \ type^-$	Assumption
$\Theta, \alpha \vdash N \text{ type}^-$	By Lemma A.2 (Term well-formedness weakening)
$\Theta \vdash \forall \alpha. M \text{ type}^-$	Assumption
$\Theta, \alpha \vdash M$ type ⁻	Inversion (Twfforall)
$\Theta \vdash [P/\alpha]\mathcal{M} \leq^{-} N$	Subderivation
$\Theta, \alpha \vdash N \leq^{-} M$	Subderivation
$P \in Uvar$	By Lemma B.5 (Mutual subtyping substitution)
$ [P/\alpha]M _{_{NO}} = M _{_{NO}}$	Since $ P _{NO} = 1 = \alpha _{NO}$
$\Theta \vdash [P/\alpha]M$ type ⁻	By Lemma B.2 (Declarative substitution w.f.)
$\Theta \vdash N \leq^{-} [P/\alpha]M$	By Lemma B.3 (Declarative subtyping is stable under substitution)
$\left \left[P/\alpha\right]M\right _{NQ}=\left N\right _{NQ}$	By i.h. (since $P \in Uvar$, the derivation of $\Theta \vdash N \leq [P/\alpha]M$ is the same size as the derivation of $\Theta, \alpha \vdash N \leq M$)
$ \mathcal{M} _{_{\mathrm{NO}}}= \mathcal{N} _{_{\mathrm{NO}}}$	Using $ [P/\alpha]M _{NO} = M _{NO}$
$\blacksquare \forall \alpha. M _{NQ} = N _{NQ}$	By definition of type size

• Case
$$\frac{\Theta, \alpha \vdash M \leq^{-} N}{\Theta \vdash M \leq^{-} \forall \alpha. N} \leq^{\pm} \mathsf{D} \mathsf{forallr} \quad \frac{\Theta \vdash \mathsf{P} \, \mathsf{type}^{+} \Theta \vdash [\mathsf{P}/\alpha] N \leq^{-} M}{\Theta \vdash \forall \alpha. N \leq^{-} M} \leq^{\pm} \mathsf{D} \mathsf{foralll}$$

Symmetrical to the previous case (M and N are swapped).

• Case
$$\frac{\Theta \vdash Q \leq^+ P}{\Theta \vdash P \to M \leq^- Q \to N} \leq^{\pm} \mathsf{Darrow} \quad \frac{\Theta \vdash P \leq^+ Q}{\Theta \vdash Q \to N \leq^- P \to M} \leq^{\pm} \mathsf{Darrow}$$

$\Theta \vdash P \rightarrow N \ type^-$	Assumption
$\Theta \vdash P \ type^+$	Inversion (Twfarrow)
$\Theta \vdash N \ type^-$	//
$\Theta \vdash Q \to M \ type^-$	Assumption

$\Theta \vdash Q$ t $\Theta \vdash M$ t	type ⁺ type ⁻	Inversion (Twfarrow)	١	
$egin{array}{l} \Thetadash P\leq^+ 0 \ \Thetadash Q\leq^+ 1 \ P _{_{NQ}}= \ \Thetadash M\leq^- 1 \end{array}$	P Q _{NQ}	Subderivation " By i.h. Subderivation		
$\Theta \vdash N \leq^{-1}$	M	11		
	$N _{NQ}$			
$\mathbb{I} = P \to M _{NQ} = P \to M _{M} = M \to M _{M} = M \to M _{M} = M \to M _{$	$Q \to N _{_{NQ}}$	By definition of type	size	
• Case $\frac{\Theta \vdash Q}{G}$	$\leq^+ P \Theta$ $\Theta \vdash \uparrow P \leq^- \uparrow$	$\frac{\vdash P \leq^+ Q}{\upharpoonright Q} \leq^{\pm} Dshift^{\uparrow}$	$\frac{\Theta \vdash Q \leq^+ P}{\Theta \vdash \uparrow Q}$	$\frac{\Theta \vdash Q \leq^+ P}{Q \leq^- \uparrow P} \leq^{\pm} Dshift \uparrow$
$\Theta \vdash \uparrow P \ type^-$	Assumptio	n		
$\Theta \vdash P \ type^+$				
$\Theta \vdash \uparrow Q \text{ type}^-$	-			
$\Theta \vdash Q \ type^+$	Inversion	(Twfshift↑)		
$\Theta \vdash P \leq^+ Q$ $\Theta \vdash Q \leq^+ P$	//	tion		
	D : 1-			

$$\begin{split} |\mathsf{P}|_{_{NQ}} &= |\mathsf{Q}|_{_{NQ}} & \text{By i.h.} \\ |\uparrow\mathsf{P}|_{_{NQ}} &= |\uparrow\mathsf{Q}|_{_{NQ}} & \text{By definition of } |-|_{_{NQ}} \end{split}$$

B'.2 Transitivity

Lemma B.7 (Declarative subtyping is transitive). *If* $\Theta \vdash A$ type[±], $\Theta \vdash B$ type[±], $\Theta \vdash C$ type[±], $\Theta \vdash A \leq^{\pm} B$, and $\Theta \vdash B \leq^{\pm} C$, then $\Theta \vdash A \leq^{\pm} C$.

Proof. By rule induction on $\Theta \vdash B \leq^{\pm} C$ weighted by the lexicographic ordering of ($|B|_{NQ}$, NPQ(B)+NPQ(C)) in the positive case and ($|C|_{NQ}$, NPQ(B) + NPQ(C)) in the negative case.

• **Case** $\frac{\Theta \vdash \alpha \text{ type}^+}{\Theta \vdash \alpha \leq^+ \alpha} \leq^{\pm} \mathsf{Drefl} \quad \frac{\Theta \vdash \alpha \text{ type}^+}{\Theta \vdash \alpha \leq^+ \alpha} \leq^{\pm} \mathsf{Drefl}$

 $\begin{array}{ll} \Theta \vdash \alpha \ type^+ & \mbox{Subderivation} \\ {\scriptstyle \scriptstyle \ensuremath{ \hbox{\tiny ISS}}} & \Theta \vdash \alpha \leq^+ \alpha & \mbox{By} \leq^\pm \mbox{Drefl} \end{array}$

• Case
$$\frac{\Theta \vdash M \leq^{-} N \quad \Theta \vdash N \leq^{-} M}{\Theta \vdash \downarrow N \leq^{+} \downarrow M} \leq^{\pm} \mathsf{Dshift} \downarrow \quad \frac{\Theta \vdash N' \leq^{-} M \quad \Theta \vdash M \leq^{-} N'}{\Theta \vdash \downarrow M \leq^{+} \downarrow N'} \leq^{\pm} \mathsf{Dshift} \downarrow$$

The second judgment must be an instance of \leq^{\pm} Dshift \downarrow due to the structure of $\downarrow M$.

$\begin{array}{l} \Theta \vdash {\downarrow} N \ type^+ \\ \Theta \vdash {\downarrow} M \ type^+ \\ \Theta \vdash {\downarrow} N' \ type^+ \\ \Theta \vdash N \ type^- \\ \Theta \vdash M \ type^- \\ \Theta \vdash N' \ type^- \end{array}$	Assumption " " Inversion (Twfshift↓) " "
$\begin{array}{l} \Theta \vdash M \leq^- N \\ \Theta \vdash N \leq^- M \\ M _{NQ} = N _{NQ} \\ \Theta \vdash M \leq^- N' \\ \Theta \vdash N' \leq^- M \\ M _{NQ} = N' _{NQ} \end{array}$	Subderivation " By Lemma B.6 (Isomorphic types are the same size) Subderivation " By Lemma B.6 (Isomorphic types are the same size)
$\begin{array}{l} \Theta \vdash N' \leq^- M \\ \Theta \vdash M \leq^- N \\ \Theta \vdash N' \leq^- N \\ \Theta \vdash N \leq^- M \\ \Theta \vdash M \leq^- N' \\ \Theta \vdash N \leq^- N' \\ \Theta \vdash N \leq^+ V N' \end{array}$	Above " By i.h. $(N _{NQ} = M _{NQ} < \downarrow M _{NQ})$ Above " By i.h. $(N' _{NQ} = M _{NQ} < \downarrow M _{NQ})$ By $\leq^{\pm} Dshift \downarrow$

• Case $\frac{\Theta, \alpha \vdash M \leq^{-} \mathsf{N'}}{\Theta \vdash M \leq^{-} \forall \alpha, \mathsf{N'}} \leq^{\pm} \mathsf{D}\mathsf{forallr}$

Here we only need to decompose the second declarative judgment.

	$\Theta \vdash N \ type^-$	Assumption
	$\Theta, \alpha \vdash N \text{ type}^-$	By Lemma A.2 (Term well-formedness weakening)
	$\Theta \vdash M$ type ⁻	Assumption
	$\Theta, \alpha \vdash M$ type ⁻	By Lemma A.2 (Term well-formedness weakening)
	$\Theta, \alpha \vdash \forall \alpha. N' \text{ type}^-$	Assumption
	$\Theta, \alpha \vdash N' \text{ type}^-$	Inversion (Twfforall)
	$\Theta \vdash N \leq^{-} M$	Assumption
	$\Theta, lpha \vdash N \leq^{-} M$	By Lemma A.4 (Declarative subtyping weakening)
	$\Theta, \alpha \vdash M \leq^{-} N'$	Subderivation
	$\Theta, \alpha \vdash N \leq^{-} N'$	By i.h. $(N' _{NO} = \forall \alpha. N' _{NO}$ and the number of prenex quantifiers in
		the second judgment has reduced by 1)
ß	$\Theta \vdash N \leq^{-} \forall \alpha. N'$	By \leq^{\pm} Dforallr ($\alpha \notin$ FUV(N) since $\alpha \notin$ UV(Θ) (because α fresh)
		and also $\Theta \vdash N$ type ⁻)

• Case
$$\frac{\Theta, \alpha \vdash N \leq^{-} M}{\Theta \vdash N \leq^{-} \forall \alpha. M} \leq^{\pm} \mathsf{D} \mathsf{forallr} \quad \frac{\Theta \vdash \mathsf{P} \, \mathsf{type}^{+} \quad \Theta \vdash [\mathsf{P}/\alpha] M \leq^{-} \mathsf{N}'}{\Theta \vdash \forall \alpha. M \leq^{-} \mathsf{N}'} \leq^{\pm} \mathsf{D} \mathsf{foralll}$$

	$\Theta \vdash N \ type^-$	Assumption
	$\Theta \vdash \forall \alpha. M \text{ type}^-$	Assumption
	$\Theta, \alpha \vdash M$ type ⁻	Inversion (Twfforall)
	$\Theta \vdash N' type^-$	Assumption
	$\Theta, \alpha \vdash N \leq^{-} M$	Subderivation
	$\Theta \vdash P \ type^+$	Subderivation
	$\Theta \vdash N \leq^{-} [P/\alpha]M$	By Lemma B.3 (Declarative subtyping is stable under substitution) $(\alpha \notin FUV(N)$ by side condition of \leq^{\pm} Dforallr)
	$\Theta \vdash [P/\alpha]M \leq^{-} N'$	Subderivation
B	$\Theta \vdash N \leq^{-} N'$	By i.h. $(N' _{NO} = N' _{NO})$ and the number of prenex quantifiers in
		the second judgment has reduced by 1. Substitution
		can only replace positive types, so it cannot change the

number of prenex quantifiers in a negative type)

• Case $\frac{\Theta \vdash Q \leq^{+} P \quad \Theta \vdash N \leq^{-} M}{\Theta \vdash P \rightarrow N \leq^{-} Q \rightarrow M} \leq^{\pm} \mathsf{Darrow} \quad \frac{\Theta \vdash P' \leq^{+} Q \quad \Theta \vdash M \leq^{-} N'}{\Theta \vdash Q \rightarrow M \leq^{-} P' \rightarrow N'} \leq^{\pm} \mathsf{Darrow}$ $\Theta \vdash P \rightarrow N \ type^-$ Assumption $\Theta \vdash P \text{ type}^+$ Inversion (Twfarrow) $\Theta \vdash N \ type^-$ 11 $\Theta \vdash Q \rightarrow M \text{ type}^-$ Assumption $\Theta \vdash Q$ type⁺ Inversion (Twfarrow) 11 $\Theta \vdash M$ type⁻ $\Theta \vdash P' \to N' \ type^-$ Assumption $\Theta \vdash P' \ type^+$ Inversion (Twfarrow) $\Theta \vdash N'$ type⁻ $\begin{array}{l} \Theta \vdash \mathsf{P}^{\,\prime} \leq^+ \mathsf{Q} \\ \Theta \vdash \mathsf{Q} \leq^+ \mathsf{P}^{\,\prime} \end{array}$ Subderivation By Lemma B.4 (Symmetry of positive declarative subtyping) $\left|\mathsf{P}'\right|_{\mathsf{NO}} = \left|\mathsf{Q}\right|_{\mathsf{NO}}$ By Lemma B.6 (Isomorphic types are the same size) $\Theta \vdash \mathsf{P}' \leq^+ \mathsf{Q}$ Subderivation $\Theta \vdash Q \leq^+ P$ 11 $\Theta \vdash \mathsf{P'} \leq^+ \mathsf{P}$ By i.h. $(|Q|_{NQ} = |P'|_{NQ} < |P' \to N'|_{NQ})$ $\Theta \vdash N \leq^{-} M$ Subderivation 11 $\Theta \vdash M \leq^{-} \mathsf{N}^{\,\prime}$ By i.h. $(|N'|_{NQ} < |P' \rightarrow N'|_{NQ})$ $\Theta \vdash N \leq^{-} N'$ $\Theta \vdash P \rightarrow N \leq^{-} P' \rightarrow N' \quad By \leq^{\pm} Darrow$ 6

• **Case** $\frac{\Theta \vdash Q \leq^{+} P \quad \Theta \vdash P \leq^{+} Q}{\Theta \vdash \uparrow P \leq^{-} \uparrow Q} \leq^{\pm} \mathsf{Dshift} \uparrow \quad \frac{\Theta \vdash P' \leq^{+} Q \quad \Theta \vdash Q \leq^{+} P'}{\Theta \vdash \uparrow Q \leq^{-} \uparrow P'} \leq^{\pm} \mathsf{Dshift} \uparrow$ Symmetrical to $\leq^{\pm} \mathsf{Dshift} \downarrow$ case.

C' Weak context extension

Lemma C.1 (\Longrightarrow subsumes \longrightarrow). If $\Theta \longrightarrow \Theta'$, then $\Theta \Longrightarrow \Theta'$. *Proof.* By rule induction over the $\Theta \longrightarrow \Theta'$ judgment.

• Case
$$\xrightarrow[\cdot \longrightarrow]{}$$
 Cempty

 \blacksquare $\cdot \implies \cdot$ By Wcempty

• Case
$$\frac{\Theta \longrightarrow \Theta'}{\Theta, \alpha \longrightarrow \Theta', \alpha} \text{ Cuvar}$$

$$\Theta \Longrightarrow \Theta' \qquad \text{By i.h.}$$

$$\blacksquare \quad \Theta, \alpha \Longrightarrow \Theta', \alpha \quad \text{By Weuvar}$$

• Case
$$\begin{array}{c} \Theta \longrightarrow \Theta' \\ \hline \Theta, \hat{\alpha} \longrightarrow \Theta', \hat{\alpha} \end{array}$$
 Cunsolvedguess

$$\begin{split} \Theta &\Longrightarrow \Theta' & \text{By i.h.} \\ {}^{\hspace{1.5cm}\text{\tiny BS}} & \Theta, \hat{\alpha} &\Longrightarrow \Theta', \hat{\alpha} & \text{By Wcunsolvedguess} \end{split}$$

• Case
$$\begin{array}{c} \Theta \longrightarrow \Theta' \\ \hline \Theta, \hat{\alpha} \longrightarrow \Theta', \hat{\alpha} = P \end{array} C solveguess \end{array}$$

$$\begin{split} \Theta & \Longrightarrow \Theta' & \text{By i.h.} \\ \mathfrak{s} & \Theta, \hat{\alpha} & \Longrightarrow \Theta', \hat{\alpha} = \mathsf{P} & \text{By Wcsolveguess} \end{split}$$

• Case

$$\frac{\Theta \longrightarrow \Theta' \qquad \|\Theta\| \vdash P \cong^+ Q}{\Theta, \hat{\alpha} = P \longrightarrow \Theta', \hat{\alpha} = Q}$$
Csolvedguess

$$\begin{split} \Theta &\Longrightarrow \Theta' & \text{By i.h.} \\ \|\Theta\| \vdash \mathsf{P} \cong^+ \mathsf{Q} & \text{Premise} \\ \mathbb{I} & \Theta, \hat{\alpha} = \mathsf{P} &\Longrightarrow \Theta', \hat{\alpha} = \mathsf{P} & \text{By Wcsolvedguess} \end{split}$$

Lemma C.2 (Weak context extension is reflexive). For all contexts Θ , $\Theta \implies \Theta$.

Proof. Corollary of Lemma D.1 (Context extension is reflexive).

 $\begin{array}{ccc} \Theta & \longrightarrow \Theta & \mbox{ By Lemma D.1 (Context extension is reflexive)} \\ \begin{tabular}{l} \label{eq:second} \end{tabular} & \end{tabular} \Theta & \end{tabular} \Theta & \end{tabular} \end{tabular} \end{tabular} & \end{tabular} \end{array}$

Lemma C.3 (Equality of declarative contexts (weak)). If $\Theta \implies \Theta'$, then $\|\Theta\| = \|\Theta'\|$. *Proof.* By rule induction over the $\Theta \implies \Theta'$ judgment.

• Case
$$\xrightarrow[\cdot \implies \cdot]{}$$
 Wcempty

 $\blacksquare = \|\cdot\| = \|\cdot\|$

• Case
$$\frac{\Theta \Longrightarrow \Theta'}{\Theta, \alpha \Longrightarrow \Theta', \alpha} \text{ Weuvar }$$

$$\begin{split} \|\Theta, \alpha\| &= \|\Theta\|, \alpha & \text{By definition of } \|-\| \\ &= \|\Theta'\|, \alpha & \text{By i.h.} \\ &= \|\Theta', \alpha\| & \text{By definition of } \|-\| \end{split}$$

• Case
$$\frac{\Theta \Longrightarrow \Theta'}{\Theta, \hat{\alpha} \Longrightarrow \Theta', \hat{\alpha}} \text{ Wcunsolvedguess}$$

$$\begin{split} \|\Theta, \hat{\alpha}\| &= \|\Theta\| & \text{By definition of } \|-\| \\ &= \|\Theta'\| & \text{By i.h.} \\ &= \|\Theta', \hat{\alpha}\| & \text{By definition of } \|-\| \end{split}$$

• Case $\frac{\Theta \Longrightarrow \Theta'}{\Theta, \hat{\alpha} \Longrightarrow \Theta', \hat{\alpha} = P} \text{ Wcsolveguess}$

$$\begin{split} \|\Theta, \hat{\alpha}\| &= \|\Theta\| & \text{By definition of } \|-\| \\ &= \|\Theta'\| & \text{By i.h.} \\ &= \|\Theta', \hat{\alpha} = P\| & \text{By definition of } \|-\| \end{split}$$

• Case
$$\frac{\Theta \Longrightarrow \Theta' \quad \|\Theta\| \vdash P \cong^+ Q}{\Theta, \hat{\alpha} = P \implies \Theta', \hat{\alpha} = Q} \text{ Wcsolvedguess}$$

$$\begin{split} \|\Theta, \hat{\alpha} = \mathsf{P}\| &= \|\Theta\| & \text{By definition of } \|-\| \\ &= \|\Theta'\| & \text{By i.h.} \\ &= \|\Theta', \hat{\alpha} = Q\| & \text{By definition of } \|-\| \end{split}$$

• Case $\frac{\Theta \Longrightarrow \Theta'}{\Theta \Longrightarrow \Theta', \hat{\alpha}} \text{ Wcnewunsolvedguess}$

$$\begin{split} \|\Theta\| &= \|\Theta'\| & \text{By i.h.} \\ &= \|\Theta', \hat{\alpha}\| & \text{By definition of } \|-\| \end{split}$$

- Case $\frac{\Theta \Longrightarrow \Theta'}{\Theta \Longrightarrow \Theta', \hat{\alpha} = P} \text{ Wcnewsolvedguess}$
- $$\begin{split} \|\Theta\| &= \|\Theta'\| & \text{By i.h.} \\ &= \|\Theta', \hat{\alpha} = P\| & \text{By definition of } \|-\| \end{split}$$

Lemma C.4 (Weak context extension is transitive). If $\Theta \Longrightarrow \Theta'$ and $\Theta' \Longrightarrow \Theta''$, then $\Theta \Longrightarrow \Theta''$. *Proof.* By rule induction over the $\Theta' \Longrightarrow \Theta''$ judgment.

• Neither Wcnewunsolvedguess nor Wcnewunsolvedguess: By rule induction over the $\Theta \implies \Theta'$ judgment.

- Case
$$\xrightarrow[\cdot \implies \cdot]{}$$
 Wcempty

 $\bullet \to \Theta''$ Assumption

- Case
$$\frac{\Theta \Longrightarrow \Theta'}{\Theta, \alpha \Longrightarrow \Theta', \alpha} \text{Weuvan}$$

By inversion on the second assumption (Wcuvar), the last context must be Θ'', α .

- Case $\frac{\Theta \Longrightarrow \Theta'}{\Theta, \hat{\alpha} \Longrightarrow \Theta', \hat{\alpha}} \text{ Wcunsolvedguess}$

By inversion on the second assumption, we must have either $\Theta', \hat{\alpha} \Longrightarrow \Theta'', \hat{\alpha}$ (Wcunsolvedguess) or $\Theta', \hat{\alpha} \implies \Theta'', \hat{\alpha} = P$ (Wcsolveguess):

* Case
$$\Theta', \hat{\alpha} \Longrightarrow \Theta'', \hat{\alpha}$$
:

$$\Theta' \Longrightarrow \Theta''$$
 Inversion (Wcunsolvedguess)

 $\begin{array}{ccc} \Theta \Longrightarrow \Theta'' & \mbox{By i.h.} \\ {}^{\hspace{-.1em}\mbox{\tiny IS}} & \Theta, \hat{\alpha} \Longrightarrow \Theta'', \hat{\alpha} & \mbox{By Wcunsolvedguess} \end{array}$

* **Case**
$$\Theta', \hat{\alpha} \Longrightarrow \Theta'', \hat{\alpha} = P$$
:

 $\Theta' \Longrightarrow \Theta''$ Inversion (Wcsolveguess)

 $\Theta \Longrightarrow \Theta''$ By i.h. $\blacksquare \quad \Theta, \hat{\alpha} \implies \Theta'', \hat{\alpha} = P \quad By \text{ Wcsolveguess}$

- Case
$$\frac{\Theta \Longrightarrow \Theta' \quad \|\Theta\| \vdash P \cong^+ Q}{\Theta, \hat{\alpha} = P \Longrightarrow \Theta', \hat{\alpha} = Q} \text{ Wcsolvedguess}$$

By inversion on the second assumption (Wcsolvedguess), the last context must be of the form $\Theta'', \hat{\alpha} = R.$

$egin{array}{lll} \Theta', \hat{lpha} = Q \implies \Theta'', \hat{lpha} = R \ \Theta' \implies \Theta'' \ \ \Theta'\ dash Q \cong^+ R \end{array}$	Assumption Inversion (Wcsolvedguess) "
$\Theta \Longrightarrow \Theta''$	By i.h.
$\ \Theta\ \vdash P\cong^+Q$	Premise
$\ \Theta\ \vdash Q\cong^+ R$	By Lemma C.3 (Equality of declarative contexts (weak))
$\ \Theta\ \vdash P\cong^+R$	By Lemma B.7 (Declarative subtyping is transitive)
$\Theta, \hat{\alpha} = P \implies \Theta'', \hat{\alpha} = R$	By Wcsolvedguess

6

- Case
$$\begin{array}{c} \Theta \Longrightarrow \Theta' \\ \hline \Theta, \hat{\alpha} \Longrightarrow \Theta', \hat{\alpha} = P \end{array} \text{Wcsolveguess} \end{array}$$

By inversion on the second assumption (Wcsolvedguess), the last context must be of the form $\Theta'', \hat{\alpha} = Q.$

 $\begin{array}{ll} \Theta', \hat{\alpha} = \mathsf{P} \Longrightarrow \Theta'', \hat{\alpha} = Q & \mbox{Assumption} \\ \Theta' \Longrightarrow \Theta'' & \mbox{Inversion (Wcsolvedguess)} \end{array}$ $\Theta \Longrightarrow \Theta''$ By i.h. $\Theta, \hat{\alpha} \Longrightarrow \Theta'', \hat{\alpha} = Q$ By Wcsolveguess

ß

- Case $\frac{\Theta \Longrightarrow \Theta'}{\Theta \Longrightarrow \Theta', \hat{\alpha}} \text{ Wcnewunsolvedguess}$

By inversion on the second assumption, we must have either $\Theta', \hat{\alpha} \Longrightarrow \Theta'', \hat{\alpha}$ (Wcunsolvedguess) or $\Theta', \hat{\alpha} \implies \Theta'', \hat{\alpha} = P$ (Wcsolvedguess):

* Case $\Theta', \hat{\alpha} \Longrightarrow \Theta'', \hat{\alpha}$:

 $\begin{array}{ll} \Theta', \hat{\alpha} \Longrightarrow \Theta'', \hat{\alpha} & \mbox{Assumption} \\ \Theta' \Longrightarrow \Theta'' & \mbox{Inversion (Wcunsolvedguess)} \end{array}$

 $\Theta \Longrightarrow \Theta''$ By i.h.

 $\Theta \Longrightarrow \Theta'', \hat{\alpha}$ By Wcnewunsolvedguess

* Case
$$\Theta', \hat{\alpha} \Longrightarrow \Theta'', \hat{\alpha} = P$$
:

$ \begin{array}{l} \Theta', \hat{\alpha} \Longrightarrow \Theta'', \hat{\alpha} = P \\ \Theta' \Longrightarrow \Theta'' \end{array} $	Assumption Inversion (Wcsolvedguess)
$\begin{array}{l} \Theta \Longrightarrow \Theta'' \\ \Theta \Longrightarrow \Theta'', \hat{\alpha} = P \end{array}$	By i.h. By Wcnewsolvedguess

- Case
$$\frac{\Theta \Longrightarrow \Theta'}{\Theta \Longrightarrow \Theta', \hat{\alpha} = P} \text{ Wcnewsolvedguess}$$

By inversion on the second assumption (Wcsolvedguess), the last context must be of the form $\Theta'', \hat{\alpha} = Q.$

 $\begin{array}{ll} \Theta', \hat{\alpha} = \mathsf{P} \implies \Theta'', \hat{\alpha} = Q & \mbox{Assumption} \\ \Theta' \implies \Theta'' & \mbox{Inversion (Wcsolvedguess)} \end{array}$ $\begin{array}{ll} \Theta \implies \Theta'' & \mbox{By i.h.} \\ \Theta \implies \Theta'', \hat{\alpha} = Q & \mbox{By Wenewsolvedguess} \end{array}$

• Case $\frac{\Theta' \Longrightarrow \Theta''}{\Theta' \Longrightarrow \Theta'', \hat{\alpha}} \text{ Wcnewunsolvedguess}$

$$\begin{array}{ll} \Theta \Longrightarrow \Theta'' & \mbox{By i.h.} \\ \ensuremath{\mathbb{I}} & \Theta \Longrightarrow \Theta'', \hat{\alpha} & \mbox{By Wenewunsolvedguess} \end{array}$$

• Case
$$\frac{\Theta' \Longrightarrow \Theta''}{\Theta' \Longrightarrow \Theta'', \hat{\alpha} = P} \text{ Wcnewunsolvedguess}$$

$$\begin{split} \Theta &\Longrightarrow \Theta'' & \text{By i.h.} \\ \mathbf{I} & \Theta &\Longrightarrow \Theta'', \hat{\alpha} = \mathsf{P} & \text{By Wenewsolvedguess} \end{split}$$

Lemma C.5 (Weak context extension preserves well-formedness). If $\Theta \vdash A$ type[±] and $\Theta \implies \Theta'$ then $\Theta' \vdash A$ type[±].

Proof. By rule induction over the $\Theta \vdash A$ type[±] judgment.

• Case $\begin{array}{l} \alpha \in FUV(\Theta) \\ \alpha \in FUV(\Theta) \end{array} \quad \text{Twfuvar} \\ \alpha \in FUV(\Theta) \end{array} \quad \text{Premise} \\ \alpha \in FUV(\Theta') \qquad \text{Inversion (must have instance of Wcuvar)} \\ \blacksquare \quad \Theta' \vdash \alpha \text{ type}^+ \qquad \text{By Twfuvar} \end{array}$

• Case $\frac{\Theta \vdash N \text{ type}^-}{\Theta \vdash \downarrow N \text{ type}^+} \text{ Twfshift} \downarrow$

 $\begin{array}{lll} \Theta' \vdash N \ type^- & By \ i.h. \\ {}_{\hspace{-.1em}\else \ } & \Theta' \vdash {}_{\hspace{-.1em}\else \ } N \ type^- & By \ Twfshift {}_{\hspace{-.1em}\else \ } \end{array}$

• **Case** $\frac{\Theta, \alpha \vdash N \text{ type}^{-}}{\Theta \vdash \forall \alpha. N \text{ type}^{-}} \text{ Twfforall}$

 $\begin{array}{lll} \Theta \Longrightarrow \Theta' & \text{Assumption} \\ \Theta, \alpha \Longrightarrow \Theta', \alpha & \text{By Wcuvar} \\ \Theta', \alpha \vdash \text{N type}^- & \text{By i.h.} \\ & & \Theta' \vdash \forall \alpha. \text{N type}^- & \text{By Twfforall} \end{array}$

• Case

$$\frac{\Theta \vdash P \text{ type}^+ \quad \Theta \vdash N \text{ type}^-}{\Theta \vdash P \rightarrow N \text{ type}^-} \text{ Twfarrow}$$

$$\frac{\Theta' \vdash P \text{ type}^+ \quad \text{By i.h.}}{\Theta' \vdash N \text{ type}^- \quad \text{By i.h.}}$$
• Case

$$\frac{\Theta \vdash P \text{ type}^+}{\Theta \vdash \uparrow P \text{ type}^-} \text{ Twfshift}\uparrow$$

 $\begin{array}{ll} \Theta' \vdash \mathsf{P} \ \text{type}^+ & \text{By i.h.} \\ \Theta' \vdash \uparrow \mathsf{P} \ \text{type}^- & \text{By Twfshift} \uparrow \end{array}$

Lemma C.6 (Weak context extension preserves w.f. envs). *If* $\Theta \implies \Theta'$ *and* $\Theta \vdash \Gamma$ env, *then* $\Theta' \vdash \Gamma$ env. *Proof.* By rule induction over the definition of well-formed typing environments.

• Case
$$\frac{}{\Theta \vdash \cdot env} \text{ Ewfempty}$$

$$\Theta' \vdash \cdot env$$
 By Ewfempty

• Case $\Theta \vdash \Gamma env$ P ground Ewfvar $\Theta \vdash \mathsf{P} \operatorname{type}^+$ $\Theta \vdash \Gamma, x : P env$ $\Theta \vdash \Gamma, \chi : P env$ Assumption $\Theta \vdash \Gamma \, env$ By premise $\Theta' \vdash \Gamma$ env By i.h. $\Theta \vdash P \ type^{\pm}$ By premise $\Theta' \vdash P \ type^{\pm}$ By Lemma C.5 P ground By premise $\Theta' \vdash \Gamma, x : P env$ By Ewfvar 67

Lemma C.7 (The extended context makes the type ground (weak)). *If* Θ ctx, Θ' ctx, $\Theta \implies \Theta'$, and $[\Theta'][\Theta]A$ *ground, then* $[\Theta']A$ *ground.*

Proof. Consider an arbitrary existential variable $\hat{\alpha}$ in A. Then for $[\Theta'][\Theta]A$ to be ground, we must have at least one of $\hat{\alpha} = P \in \Theta$, or $\hat{\alpha} = Q \in \Theta'$. We know that applying the contexts to the type will never introduce a non-ground type since Θ ctx and Θ' ctx.

By inversion on $\Theta \implies \Theta'$, we can also see that if an existential variable is solved in the left-hand side context, then it must also be solved in the right-hand side context. Therefore we must have that $\hat{\alpha} = Q \in \Theta'$, and by Θ' ctx we know that Q is ground.

We now know that every existential variable in A is solved as a ground type by Θ' , hence $[\Theta']A$ must be ground.

Lemma C.8 (Extending context preserves groundness (weak)). *If* Θ ctx, Θ' ctx, $\Theta \implies \Theta'$, and $[\Theta]$ *A ground, then* $[\Theta']$ *A ground.*

Proof. Corollary of Lemma C.7 (The extended context makes the type ground (weak)).

	Θ ctx	Assumption
	Θ' ctx	Assumption
	$\Theta \Longrightarrow \Theta'$	Assumption
	$[\Theta]A$ ground	Assumption
	$[\Theta'][\Theta]A$ ground	By Lemma D.5 (Applying a context to a ground type)
ß	$[\Theta']A$ ground	By Lemma C.7 (The extended context makes the type ground (weak))

D' Context extension

Lemma D.1 (Context extension is reflexive). For all contexts Θ , $\Theta \longrightarrow \Theta$.

Proof. By structural induction on Θ .

- Case ·:
- $\blacksquare \quad \cdot \quad \longrightarrow \quad By \ Cempty$
 - Case Θ, α :

 $\begin{array}{ccc} \Theta & \longrightarrow \Theta & & \text{By i.h.} \\ \text{ so } & \Theta, \alpha & \longrightarrow \Theta, \alpha & & \text{By Cuvar} \end{array}$

• Case Θ , $\hat{\alpha}$:

 $\begin{array}{ccc} \Theta & \longrightarrow \Theta & & \text{By i.h.} \\ {}^{\hspace{-1.5mm}} {$

• Case Θ , $\hat{\alpha} = P$:

 $\begin{array}{ccc} \Theta & \longrightarrow \Theta & & \text{By i.h.} \\ \Theta \vdash \mathsf{P} \cong^+ \mathsf{P} & & \text{By Lemma B.1 (Declarative subtyping is reflexive)} \\ \texttt{Is}^{\ast} & \Theta, \hat{\alpha} = \mathsf{P} & \longrightarrow \Theta, \hat{\alpha} = \mathsf{P} & & \text{By Csolvedguess} \end{array}$

Lemma D.2 (Equality of declarative contexts). *If* $\Theta \longrightarrow \Theta'$, *then* $\|\Theta\| = \|\Theta'\|$. *Proof.* Corollary of Lemma C.3 (Equality of declarative contexts (weak)).

 $\begin{array}{ll} \Theta \longrightarrow \Theta' & \text{Assumption} \\ \Theta \Longrightarrow \Theta' & \text{By Lemma C.1 (} \Longrightarrow \text{ subsumes } \longrightarrow \text{)} \\ \hline & \blacksquare \\ \|\Theta\| = \|\Theta'\| & \text{By Lemma C.3 (Equality of declarative contexts (weak))} \end{array}$

Lemma D.3 (Context extension is transitive). If $\Theta \longrightarrow \Theta'$ and $\Theta' \longrightarrow \Theta''$, then $\Theta \longrightarrow \Theta''$. *Proof.* By rule induction over the $\Theta \longrightarrow \Theta'$ judgment.

• Case $\xrightarrow[\cdot]{ \cdot } \cdot$ Cempty

 \bullet $\bullet \longrightarrow \Theta''$ Assumption

• Case $\frac{\Theta \longrightarrow \Theta'}{\Theta, \alpha \longrightarrow \Theta', \alpha} \text{ Cuvar}$

By inversion on the second assumption (Cuvar), the last context must be Θ'', α .

 $\begin{array}{ccc} \Theta' \longrightarrow \Theta'' & \text{Inversion (Cuvar)} \\ \Theta \longrightarrow \Theta'' & \text{By i.h.} \\ \mathfrak{s} & \Theta, \alpha \longrightarrow \Theta'', \alpha & \text{By Cuvar} \end{array}$

• Case $\begin{array}{c} \Theta \longrightarrow \Theta' \\ \hline \Theta, \hat{\alpha} \longrightarrow \Theta', \hat{\alpha} \end{array} \text{ Cunsolvedguess} \end{array}$

By inversion on the second assumption, we must have either $\Theta', \hat{\alpha} \longrightarrow \Theta'', \hat{\alpha}$ (Cunsolvedguess) or $\Theta', \hat{\alpha} \longrightarrow \Theta'', \hat{\alpha} = P$ (Csolveguess):

- Case $\Theta', \hat{\alpha} \longrightarrow \Theta'', \hat{\alpha}$:

 $\Theta' \longrightarrow \Theta''$ Inversion (Cunsolvedguess)

 $\begin{array}{ccc} \Theta & \longrightarrow \Theta'' & \mbox{ By i.h.} \\ \ensuremath{\hbox{\tiny IST}} & \Theta, \hat{\alpha} & \longrightarrow \Theta'', \hat{\alpha} & \mbox{ By Cunsolvedguess} \end{array}$

- Case
$$\Theta', \hat{\alpha} \longrightarrow \Theta'', \hat{\alpha} = P$$
:

 $\Theta' \longrightarrow \Theta'' \qquad \qquad \text{Inversion (Csolveguess)}$

 $\begin{array}{ccc} \Theta & \longrightarrow \Theta'' & & \text{By i.h.} \\ \text{ Iso } & \Theta, \hat{\alpha} & \longrightarrow \Theta'', \hat{\alpha} = P & & \text{By Csolveguess} \end{array}$

• Case
$$\begin{array}{c} \Theta \longrightarrow \Theta' & \|\Theta\| \vdash P \cong^+ Q \\ \hline \Theta, \hat{\alpha} = P \longrightarrow \Theta', \hat{\alpha} = Q \end{array} \text{Csolvedguess} \end{array}$$

By inversion on the second assumption (Csolvedguess), the last context must be of the form $\Theta'', \hat{\alpha} = R$.

	$\Theta', \hat{\alpha} = Q \longrightarrow \Theta'', \hat{\alpha} = R$	Assumption
	$\Theta' \longrightarrow \Theta''$	Inversion (Csolvedguess)
	$\ \Theta'\ \vdash Q \cong^+ R$	11
	0 0 0 //	D : 1-
	$\Theta \longrightarrow \Theta''$	By i.h.
	$\ \Theta\ \vdash P\cong^+Q$	Premise
	$\ \Theta\ \vdash Q\cong^+ \mathtt{R}$	By Lemma D.2 (Equality of declarative contexts)
	$\ \Theta\ \vdash P\cong^+R$	By Lemma B.7 (Declarative subtyping is transitive)
3	$\Theta, \hat{\alpha} = P \longrightarrow \Theta'', \hat{\alpha} = R$	By Csolvedguess

• Case $\frac{\Theta \longrightarrow \Theta'}{\Theta, \hat{\alpha} \longrightarrow \Theta', \hat{\alpha} = P} \text{ Csolveguess}$

By inversion on the second assumption (Csolvedguess), the last context must be of the form $\Theta'', \hat{\alpha} = Q$.

Assumption
Inversion (Csolvedguess)
-
By i.h.
By Csolveguess

Lemma D.4 (Context extension preserves w.f.). *If* $\Theta \vdash A$ type^{\pm} *and* $\Theta \longrightarrow \Theta'$ *, then* $\Theta' \vdash A$ type^{\pm}. *Proof.* By rule induction on $\Theta \vdash A$ type^{\pm}. • Case $\begin{array}{c} \alpha \in UV(\Theta) \\ \overline{\Theta \vdash \alpha \, type^+} \ \text{Twfuvar} \\ \\ \alpha \in UV(\Theta) \ \text{Subderivation} \\ \Theta \longrightarrow \Theta' \ \text{Assumption} \\ \alpha \in UV(\Theta') \ \text{Inversion (Cuvar)} \\ \\ \blacksquare \\ \blacksquare \ \Theta' \vdash \alpha \ type^+ \ \text{By Twfuvar} \end{array}$

- Case $\frac{\hat{\alpha} \in EV(\Theta)}{\Theta \vdash \hat{\alpha} \, type^+} \text{ Twfguess}$

	$\Theta \longrightarrow \Theta'$	Assumption
	$\boldsymbol{\hat{\alpha}} \in \! EV(\boldsymbol{\Theta})$	Subderivation
	$\widehat{\alpha} \in EV(\Theta')$	Must have an instance of Cunsolvedguess, Csolveguess, or Csolvedguess
ß	$\Theta' \vdash \hat{\alpha} \ type^+$	By Twfuvar

• Case
$$\frac{\Theta \vdash \mathsf{N} \operatorname{type}^{-}}{\Theta \vdash {\downarrow} \mathsf{N} \operatorname{type}^{+}} \operatorname{Twfshift}{\downarrow}$$

	$\Theta \vdash N \text{ type}^-$	Subderivation
	$\Theta \longrightarrow \Theta'$	Assumption
	$\Theta' \vdash N \text{ type}^-$	By i.h.
ß	$\Theta' \vdash \downarrow N \text{ type}^+$	By Twfshift \downarrow

• Case $\frac{\Theta, \alpha \vdash N \text{ type}^-}{\Theta \vdash \forall \alpha. N \text{ type}^-} \text{ Twfforall}$

• Case $\begin{array}{c} \Theta \vdash P \ type^+ & \Theta \vdash N \ type^- \\ \hline \Theta \vdash P \rightarrow N \ type^- \end{array} \ \mathsf{Twfarrow} \\ \\ \Theta \vdash P \ type^+ & \mathsf{Subderivation} \\ \\ \Theta \rightarrow \Theta' & \mathsf{Assumption} \\ \\ \Theta' \vdash P \ type^+ & \mathsf{By \ i.h.} \end{array}$

 $\Theta \vdash N \text{ type}^{-} \text{ Subderivation}$ $\Theta' \vdash N \text{ type}^{-} \text{ By i.h.}$ $\Theta' \vdash P \rightarrow N \text{ type}^{-} \text{ By Twfarrow}$ • Case $\frac{\Theta \vdash P \text{ type}^{+}}{\Theta \vdash \uparrow P \text{ type}^{-}} \text{ Twfshift}\uparrow$ $\Theta \vdash P \text{ type}^{+} \text{ Subderivation}$ $\Theta' \vdash P \text{ type}^{+} \text{ By i.h.}$ $\Theta' \vdash \uparrow P \text{ type}^{-} \text{ By Twfshift}\uparrow$

Lemma D.5 (Applying a context to a ground type). *If* A ground, then $[\Theta]A = A$.

Proof. By structural induction on Θ .

• Case :: $[\cdot]A = A$ By definition of [-]-

• Case Θ, α :

$$\begin{split} [\Theta, \alpha] A &= [\Theta] A & \text{By definition of } [-] - \\ &= A & \text{By i.h.} \end{split}$$

• Case Θ , $\hat{\alpha}$:

$$\begin{split} [\Theta, \hat{\alpha}] A &= [\Theta] A & \text{By definition of } [-] - \\ &= A & \text{By i.h.} \end{split}$$

• **Case** Θ , $\hat{\alpha} = P$:

$$\begin{split} [\Theta, \hat{\alpha} = \mathsf{P}] A &= [\Theta]([\mathsf{P}/\hat{\alpha}] A) & \text{By definition of } [-] - \\ &= [\Theta] A & A \text{ ground, so no } \hat{\alpha} \text{s to substitute} \\ &= A & \text{By i.h.} \end{split}$$

Lemma D.6 (Context application is idempotent). *If* Θ ctx, *then* $[\Theta][\Theta]A = [\Theta]A$.

Proof. By structural induction on Θ :.

• Case ·:

 $[\cdot][\cdot]A = A$ By definition of [-]-

• Case Θ, α :

$$\begin{split} [\Theta,\alpha][\Theta,\alpha]A &= [\Theta][\Theta]A & \text{By definition of } [-]-\\ &= A & \text{By i.h.} \end{split}$$

• Case Θ , $\hat{\alpha}$:

$$\begin{split} [\Theta, \hat{\alpha}] [\Theta, \hat{\alpha}] A &= [\Theta] [\Theta] A & \text{By definition of } [-] - \\ &= A & \text{By i.h.} \end{split}$$

• Case Θ , $\hat{\alpha} = P$:

$$\begin{split} & [\Theta, \hat{\alpha} = P] [\Theta, \hat{\alpha} = P] A = [\Theta] [P/\hat{\alpha}] [\Theta] [P/\hat{\alpha}] A & \text{By definition of } [-]-\\ & = [P/\hat{\alpha}] [\Theta] [\Theta] A & P \text{ ground and } \Theta, \hat{\alpha} = P \text{ ctx, so } \hat{\alpha} \text{ does not reappear} \\ & = [P/\hat{\alpha}] [\Theta] A & By \text{ i.h.} \\ & = [\Theta] [P/\hat{\alpha}] A & P \text{ ground and } \Theta, \hat{\alpha} = P \text{ ctx, so } \hat{\alpha} \text{ does not reappear} \\ & = [\Theta, \hat{\alpha} = P] A & By \text{ definition of } [-]- \end{split}$$

Lemma D.7 (The extended context makes the type ground). *If* Θ ctx, Θ' ctx, $\Theta \longrightarrow \Theta'$, and $[\Theta'][\Theta]A$ ground, *then* $[\Theta']A$ ground.

Proof. Corollary of Lemma C.7 (The extended context makes the type ground (weak)).

Θctx	Assumption
Θ' ctx	Assumption
$\Theta \longrightarrow \Theta'$	Assumption
$\Theta \Longrightarrow \Theta'$	By Lemma C.1 (\Longrightarrow subsumes \longrightarrow)
$[\Theta'][\Theta]A$ ground	Assumption
$[\Theta']A$ ground	By Lemma C.7 (The extended context makes the type ground (weak))

Lemma D.8 (Extending context preserves groundness). *If* Θ ctx, Θ' ctx, $\Theta \longrightarrow \Theta'$, and $[\Theta]A$ ground, then $[\Theta']A$ ground.

Proof. Corollary of Lemma C.8 (Extending context preserves groundness (weak)).

Θ ctx	Assumption
Θ' ctx	Assumption
$\Theta \longrightarrow \Theta'$	Assumption
$\Theta \Longrightarrow \Theta'$	By Lemma C.1 (\Longrightarrow subsumes \longrightarrow)
[Θ]A ground	Assumption
$[\Theta']A$ ground	By Lemma C.8 (Extending context preserves groundness (weak))

E' Well-formedness of subtyping

Lemma E.1 (Applying context to the type preserves w.f.). *If* Θ ctx *and* $\Theta \vdash A$ type[±], *then* $\Theta \vdash [\Theta]A$ type[±]. *Proof.* By rule induction on $\Theta \vdash A$ type[±].

• Case
$$\frac{\alpha \in UV(\Theta)}{\Theta \vdash \alpha \text{ type}^+} \text{ Twfuvar}$$

- Case $\frac{\hat{\alpha} \in EV(\Theta)}{\Theta \vdash \hat{\alpha} \, type^+} \text{ Twfguess}$

Case $(\hat{\alpha} = P) \in \Theta$:

	Θctx	Assumption
	$\Theta \vdash P \ type^+$	Must have an instance of Cwfsolvedguess
	$[\Theta]\hat{\alpha} = P$	By definition of [–]–
RF	$\Theta \vdash [\Theta] \hat{\alpha} \text{ type}^+$	By above two statements

Case $(\hat{\alpha} = P) \notin \Theta$:

 $\begin{array}{ll} \Theta \vdash \hat{\alpha} \ type^+ & Assumption \\ [\Theta]\hat{\alpha} = \hat{\alpha} & Since \ (\hat{\alpha} = P) \notin \Theta \\ \hline & & \Theta \vdash [\Theta]\hat{\alpha} \ type^+ & By \ above \ two \ statements \end{array}$

• Case $\frac{\Theta \vdash N \text{ type}^-}{\Theta \vdash \downarrow N \text{ type}^+} \text{ Twfshift} \downarrow$

 Θ ctx Assumption

	$\Theta \vdash N \text{ type}^-$	Subderivation
	$\Theta \vdash [\Theta] N \text{ type}^-$	By i.h.
	$\Theta \vdash {\downarrow}[\Theta] N \text{ type}^+$	By Twfshift↓
B	$\Theta \vdash [\Theta] {\downarrow} N \ type^+$	By definition of [–]–

• Case
$$\frac{\Theta, \alpha \vdash N \text{ type}^-}{\Theta \vdash \forall \alpha. N \text{ type}^-} \text{ Twfforall}$$

	Θ	ctx	Assumption
	Θ, α	ctx	By Cwfuvar
	$\Theta, \alpha \vdash N$ 1	type [_]	Subderivation
	$\Theta, \alpha \vdash [\Theta, \alpha]$ N t	type [_]	By i.h.
	$\Theta, \alpha \vdash [\Theta]$ N t	type [_]	By definition of [–]–
	$\Theta \vdash \forall \alpha$. [Θ]N t	type [_]	By Twfforall
ß	$\Theta \vdash [\Theta] \forall \alpha. N \downarrow$	type [_]	By definition of [–]–

• Case
$$\frac{\Theta \vdash P \text{ type}^+ \quad \Theta \vdash N \text{ type}^-}{\Theta \vdash P \rightarrow N \text{ type}^-} \text{ Twfarrow}$$

Θ	ctx	Assumption
$\Theta \vdash P$	type+	Subderivation
$\Theta \vdash [\Theta]P$	type+	By i.h.
$\Theta \vdash N$	type ⁻	Subderivation
$\Theta \vdash [\Theta]N$	type ⁻	By i.h.
$\Theta \vdash [\Theta] P \to [\Theta] N$	type ⁻	By Twfarrow
$\Theta \vdash [\Theta](P \to N)$	type ⁻	By definition of $[-]-$
	$\begin{array}{c} \Theta \vdash P \\ \Theta \vdash [\Theta]P \\ \Theta \vdash N \\ \Theta \vdash [\Theta]N \\ \Theta \vdash [\Theta]N \end{array}$	$\begin{array}{c} \Theta \ ctx \\ \Theta \vdash P \ type^+ \\ \Theta \vdash [\Theta]P \ type^+ \\ \Theta \vdash N \ type^- \\ \Theta \vdash [\Theta]N \ type^- \\ \Theta \vdash [\Theta]P \rightarrow [\Theta]N \ type^- \\ \Theta \vdash [\Theta](P \rightarrow N) \ type^- \end{array}$

• Case

$$\frac{\Theta \vdash P \text{ type}^{+}}{\Theta \vdash \uparrow P \text{ type}^{-}} \text{ Twfshift}\uparrow$$

$$\frac{\Theta \text{ ctx}}{\Theta \vdash P \text{ type}^{+}} \text{ Subderivation}$$

$$\frac{\Theta \vdash [\Theta] P \text{ type}^{+}}{\Theta \vdash [\Theta] P \text{ type}^{-}} \text{ By i.h.}$$

$$\frac{\Theta \vdash [\Theta] P \text{ type}^{-}}{\Theta \vdash [\Theta] \uparrow P \text{ type}^{-}} \text{ By Twfshift}\uparrow$$

$$\mathbb{F} \quad \Theta \vdash [\Theta] \uparrow P \text{ type}^{-} \text{ By definition of } [-] -$$

Lemma E.2 (Algorithmic subtyping is w.f.).

• If $\Theta \vdash P \leq^+ Q \dashv \Theta'$, Θ ctx, P ground, and $[\Theta]Q = Q$, then Θ' ctx, $\Theta \longrightarrow \Theta'$, and $[\Theta']Q$ ground.

• If $\Theta \vdash N \leq^{-} M \dashv \Theta'$, Θ ctx, M ground, and $[\Theta]N = N$, then Θ' ctx, $\Theta \longrightarrow \Theta'$, and $[\Theta']N$ ground. *Proof.* By mutual induction on the derivation of $\Theta \vdash A \leq^{\pm} B \dashv \Theta'$.

• Case

$$\overline{\Theta_L, lpha, \Theta_R \vdash lpha \leq^+ lpha \dashv \Theta_L, lpha, \Theta_R} \leq^{\pm} \mathsf{Arefl}$$

RF R	$\Theta_{\rm L}, \alpha, \Theta_{\rm R}$ ctx	Assumption
1 37	$\Theta_{L}, \alpha, \Theta_{R} \longrightarrow \Theta_{L}, \alpha, \Theta_{R}$	By Lemma D.1 (Context extension is reflexive)
	$[\Theta_{\mathrm{L}}, lpha, \Theta_{\mathrm{R}}] lpha = lpha$	Assumption
	α ground	Assumption
1 3	$[\Theta_{\rm L}, \alpha, \Theta_{\rm R}] \alpha$ ground	By the previous two statements

• Case
$$\frac{\Theta_{L} \vdash P \text{ type}^{+} \quad P \text{ ground}}{\Theta_{L}, \hat{\alpha}, \Theta_{R} \vdash P \leq^{+} \hat{\alpha} \dashv \Theta_{L}, \hat{\alpha} = P, \Theta_{R}} \leq^{\pm} Ainst$$

ß	$ \begin{split} \Theta_{L}, \hat{\alpha}, \Theta_{R} \ ctx \\ \Theta_{L} \vdash P \ type^{+} \\ P \ ground \\ \Theta_{L}, \hat{\alpha} = P, \Theta_{R} \ ctx \end{split} $	Assumption Subderivation Assumption Replacing the instance of Cwfunsolvedguess corresponding to $\hat{\alpha}$ with an instance of Cwfsolvedguess
	$\begin{array}{ccc} \Theta_L & \longrightarrow \Theta_L \\ \Theta_L, \hat{\alpha} & \longrightarrow \Theta_L, \hat{\alpha} = P \\ \Theta_R & \longrightarrow \Theta_R \end{array}$	By Lemma D.1 (Context extension is reflexive) By Csolveguess By Lemma D.1 (Context extension is reflexive)
	$\Theta_{L}, \hat{\alpha}, \Theta_{R} \longrightarrow \Theta_{L}, \hat{\alpha} = P, \Theta_{R}$	Reapplying rules from $\Theta_R \longrightarrow \Theta_R$
13F	$\begin{split} & [\Theta_L, \hat{\alpha} = P, \Theta_R] \hat{\alpha} = P \\ & [\Theta_L, \hat{\alpha} = P, \Theta_R] \hat{\alpha} \text{ ground} \end{split}$	By definition of [—]— By the previous two statements

• Case
$$\frac{\Theta \vdash M \leq^{-} N \dashv \Theta' \quad \Theta' \vdash N \leq^{-} [\Theta']M \dashv \Theta''}{\Theta \vdash \downarrow N \leq^{+} \downarrow M \dashv \Theta''} \leq^{\pm} \mathsf{Ashift} \downarrow$$

↓N ground	Assumption
$[\Theta]{\downarrow} M = {\downarrow} M$	Assumption

We have:

$\Theta \vdash M \leq^{-} N \dashv \Theta'$	Subderivation
Θ ctx	Assumption
N ground	By definition of ground
$[\Theta]M = M$	By definition of [–]–

Therefore:

Θ' ctx	By i.h.
$\Theta \longrightarrow \Theta'$	//
$[\Theta']M$ ground	//

Now, looking at the second premise, we have:

$\Theta' \vdash N \leq^{-} [\Theta']M \dashv \Theta''$	Subderivation
Θ' ctx	Above
$[\Theta']M$ ground	Above
$[\Theta']N = N$	By Lemma D.5 (Applying a context to a ground type)

Therefore:

	$\Theta' \longrightarrow \Theta''$	By i.h.
ß	Θ'' ctx	11
B	$\Theta \longrightarrow \Theta''$	By Lemma D.3 (Context extension is transitive)
	$[\Theta'']M$ ground	By Lemma D.8 (Extending context preserves groundness)
B	$[\Theta''] \downarrow M$ ground	By definition of ground

• Case
$$\frac{\Theta, \alpha \vdash N \leq^{-} M \dashv \Theta', \alpha}{\Theta \vdash N \leq^{-} \forall \alpha. M \dashv \Theta'} \leq^{\pm} \mathsf{Aforallr}$$

Θ ctx	Assumption
$\forall \alpha. M \text{ ground}$	Assumption
$[\Theta]N = N$	Assumption

We have:

$\Theta, lpha dash N \leq^{-} M \dashv \Theta', lpha$	Subderivation
Θ, α ctx	By Cwfuvar
M ground	By definition of ground
$[\Theta, \alpha] N = N$	Since $[\Theta, \alpha]N = [\Theta]N$ by definition of $[-]-$

Therefore:

	Θ', α ctx	By i.h.
	$\Theta, \alpha \longrightarrow \Theta', \alpha$	11
	$[\Theta', \alpha]$ N ground	"
RF R	Θ' ctx	Inversion (Cwfuvar)
6	$\Theta \longrightarrow \Theta'$	Inversion (Cuvar)
ß	$[\Theta']N$ ground	Since $[\Theta']N = [\Theta', \alpha]N$ by definition of $[-]-$

• Case
$$\frac{\Theta, \hat{\alpha} \vdash [\hat{\alpha}/\alpha] N \leq^{-} M \dashv \Theta', \hat{\alpha} [= P] \qquad M \neq \forall \alpha. M'}{\Theta \vdash \forall \alpha. N \leq^{-} M \dashv \Theta'} \leq^{\pm} \mathsf{Aforall}$$

Θ ctx	Assumption
$[\Theta]$ $\forall \alpha$. N = $\forall \alpha$. N	Assumption
$[\Theta]N = N$	By definition of [—]—

We have:

$$\begin{array}{lll} \Theta, \hat{\alpha} \vdash [\hat{\alpha}/\alpha] N \leq^{-} M \dashv \Theta', \hat{\alpha} [= P] & \text{Subderivation} \\ & \Theta, \hat{\alpha} \ \text{ctx} & \text{By Cwfunsolvedguess} \\ & M \ \text{ground} & \text{Assumption} \\ & [\Theta] \hat{\alpha} = \hat{\alpha} & \text{Since } \Theta, \hat{\alpha} \ \text{ctx} \\ & [\Theta, \hat{\alpha}] [\hat{\alpha}/\alpha] N = [\hat{\alpha}/\alpha] N & \text{Since } [\Theta] \hat{\alpha} = \hat{\alpha} \ \text{and} \ [\Theta] N = N \end{array}$$

Therefore:

	$\Theta', \hat{\alpha} [= P] \ ctx$	By i.h.
	$\Theta, \hat{lpha} \longrightarrow \Theta', \hat{lpha} [= P]$	11
	$[\Theta', \hat{\alpha} [= P]][\hat{\alpha}/\alpha] N$ ground	11
_		Inversion (Casterna)
RP 1	Θ' ctx	Inversion (Cwfuvar)
67	$\Theta \longrightarrow \Theta'$	Inversion (Cuvar)
	$[\Theta']$ N ground	Using above, α ground, and $\hat{\alpha} \notin \text{FEV}(N)$
67	$[\Theta'] \forall \alpha$. N ground	By definition of ground and $[-]-$

• Case
$$\frac{\Theta \vdash Q \leq^{+} P \dashv \Theta' \quad \Theta' \vdash [\Theta'] N \leq^{-} M \dashv \Theta''}{\Theta \vdash P \rightarrow N \leq^{-} Q \rightarrow M \dashv \Theta''} \leq^{\pm} \mathsf{Aarrow}$$

$Q \to M \hspace{0.1 cm} \text{ground}$	Assumption
$[\Theta](P \to N) = P \to N$	Assumption

We have:

$\Theta \vdash Q \leq^+ P \dashv \Theta'$	Subderivation
Θ ctx	Assumption
Q ground	Since $Q \to M$ ground
$[\Theta]P = P$	By definition of $[-]-$

Therefore:

Θ'	ctx	By i.h.
$\Theta \longrightarrow$	Θ'	//
$[\Theta']P$	ground	//

Looking at the second premise, we have:

$$\begin{split} \Theta' \vdash [\Theta'] N \leq^{-} M \dashv \Theta'' & \text{Subderivation} \\ \Theta' \text{ ctx} & \text{Above} \\ M \text{ ground} & \text{Since } Q \to M \text{ ground} \\ [\Theta'] [\Theta'] N = [\Theta'] N & \text{By Lemma D.6 (Context application is idempotent)} \end{split}$$

Therefore:

R\$	Θ'' ctx	By i.h.
	$\Theta' \longrightarrow \Theta''$	11
	$[\Theta''][\Theta']N$ ground	//
ß	$\Theta \longrightarrow \Theta''$	By Lemma D.3 (Context extension is transitive)
	$[\Theta'']$ N ground	By Lemma D.7 (The extended context makes the type ground)
	$[\Theta'']$ P ground	Applying Lemma D.8 (Extending context preserves groundness)
		with $[\Theta']$ P ground
R\$	$[\Theta'']P \to N$ ground	From equations above

• Case
$$\frac{\Theta \vdash Q \leq^{+} P \dashv \Theta' \quad \Theta' \vdash [\Theta']P \leq^{+} Q \dashv \Theta''}{\Theta \vdash \uparrow P \leq^{-} \uparrow Q \dashv \Theta''} \leq^{\pm} \mathsf{Ashift} \uparrow$$

$$\begin{array}{ll} \uparrow Q \ \mbox{ground} & \mbox{Assumption} \\ [\Theta] \uparrow P = \uparrow P & \mbox{Assumption} \end{array}$$

We have:

$\Theta \vdash Q \leq^+ P \dashv \Theta'$	Subderivation
Θ ctx	Assumption
Q ground	Since $\uparrow Q$ ground
$[\Theta]P=P$	By definition of [—]—

Therefore:

 $\begin{array}{ccc} \Theta' \mbox{ ctx } & \mbox{By i.h.} \\ \Theta \longrightarrow \Theta' & '' \\ [\Theta'] P \mbox{ ground } & '' \end{array}$

Looking at the second premise, we have:

$\Theta' \vdash [\Theta'] P \leq^+ Q \dashv \Theta''$	Subderivation
Θ' ctx	Above
$[\Theta']$ P ground	Above
$[\Theta']Q = Q$	By Lemma D.5 (Applying a context to a ground type)

Therefore:

1 37	$\Theta'' \operatorname{ctx} \\ \Theta' \longrightarrow \Theta''$	By i.h.
1 37	$\begin{array}{l} \Theta \longrightarrow \Theta'' \\ [\Theta''] P \ ground \end{array}$	By Lemma D.3 (Context extension is transitive) Applying Lemma D.8 (Extending context preserves groundness)
ß	$[\Theta'']$ \uparrow P ground	with $[\Theta']P$ ground By definition of groundness and above

F' Soundness of subtyping

F'.1 Lemmas for soundness

Lemma F.1 (Completing context preserves w.f.). *If* $\Theta \vdash A$ type^{\pm} *and* A *ground then* $\|\Theta\| \vdash A$ type^{\pm}.

Proof. By rule induction on $\Theta \vdash A$ type[±].

• Case $\begin{array}{l} \alpha \in UV(\Theta) \\ \overline{\Theta \vdash \alpha \, type^+} \ \mathsf{Twfuvar} \end{array}$ $\begin{array}{l} \alpha \in UV(\Theta) \qquad \text{Subderivation} \\ \alpha \in UV([\Omega]\Theta) \qquad \text{By definition of } [-]- \\ \mathbb{I} \\ \mathbb{I} \\ \mathbb{I} \\ \mathbb{I} \end{array} \quad \|\Theta\| \vdash \alpha \ type^+ \qquad \text{By Twfuvar} \end{array}$

- Case
$$\frac{\hat{\alpha} \in EV(\Theta)}{\Theta \vdash \hat{\alpha} \, type^+} \; \mathsf{Twfguess}$$

Not possible, since A is ground.

• Case $\frac{\Theta \vdash N \text{ type}^-}{\Theta \vdash \downarrow N \text{ type}^+} \text{ Twfshift} \downarrow$

 $\begin{array}{ccc} & \downarrow \mathsf{N} \mbox{ ground} & \mbox{Assumption} \\ & \Theta \vdash \mathsf{N} \mbox{ type}^- & \mbox{Subderivation} \\ & \mathsf{N} \mbox{ ground} & \mbox{By definition of ground} \\ & \|\Theta\| \vdash \mathsf{N} \mbox{ type}^- & \mbox{By i.h.} \\ & & & & \|\Theta\| \vdash \downarrow \mathsf{N} \mbox{ type}^+ & \mbox{By Twfshift} \downarrow \end{array}$

$$\|\Theta\| \vdash \forall \alpha. N \text{ type}^{-} \text{ By Twfforall}$$

• Case
$$\frac{\Theta \vdash P \text{ type}^+ \quad \Theta \vdash N \text{ type}^-}{\Theta \vdash P \rightarrow N \text{ type}^-} \text{ Twfarrow}$$

	$P\toN$	ground	Assumption
	$\Theta \vdash P$	type ⁺	Subderivation
	Р	ground	By definition of ground
	$\ \Theta\ \vdash P$	type ⁺	By i.h.
	$\Theta \vdash N$	type ⁻	Subderivation
	N	ground	By definition of ground
	$\ \Theta\ \vdashN$	type ⁻	By i.h.
B	$\ \Theta\ \vdash P\to N$	type ⁻	By Twfarrow

• Case $\begin{array}{c} \Theta \vdash P \text{ type}^+ \\ \hline \Theta \vdash \uparrow P \text{ type}^- \end{array} \text{ Twfshift} \uparrow \\ \\ \uparrow P \text{ ground } \text{ Assumption} \\ \\ \Theta \vdash P \text{ type}^+ & \text{Subderivation} \\ \\ P \text{ ground } \text{ By definition of ground} \\ \\ \|\Theta\| \vdash P \text{ type}^+ & \text{By i.h.} \\ \\ \hline \mathbf{w} \|\Theta\| \vdash \uparrow P \text{ type}^- & \text{By Twfshift} \\ \end{array}$

Lemma F.2 (\Longrightarrow leads to isomorphic types). If:

- 1. $\Theta \vdash A \text{ type}^{\pm}$
- $\textit{2. } \Theta \Longrightarrow \Theta'$
- 3. $[\Theta']A$ ground
- 4. Θctx
- 5. $\Theta' \operatorname{ctx}$
- then $\|\Theta\| \vdash [\Theta'][\Theta]A \cong^{\pm} [\Theta']A$.

Proof. By rule induction on $\Theta \vdash A$ type[±].

• Case
$$\frac{\alpha \in UV(\Theta)}{\Theta \vdash \alpha \text{ type}^+} \text{ Twfuvar}$$

	$\Theta \vdash \alpha \ type^+$	Subderivation
	$\ \Theta\ \vdash \alpha \ type^+$	By Lemma F.1 (Completing context preserves w.f.)
	$\ \Theta\ \vdash\alpha\leq^+\alpha$	$By \leq^{\pm} Drefl$
ß	$\ \Theta\ \vdash [\Theta'][\Theta] lpha \cong^+ [\Theta'] lpha$	By Lemma D.5 (Applying a context to a ground type)

• Case
$$\frac{\hat{\alpha} \in EV(\Theta)}{\Theta \vdash \hat{\alpha} \operatorname{type}^+} \operatorname{\mathsf{Twfguess}}$$

Case $[\Theta]\hat{\alpha} = \hat{\alpha}$:

	$(\hat{\alpha} = P) \in \Theta'$	Where $P = [\Theta']\hat{\alpha}$, since $[\Theta']\hat{\alpha}$ ground
	$\Theta' \vdash P \ type^+$	Inversion on Θ' ctx (must have instance of Cwfsolvedguess)
	$\ \Theta'\ \vdash P \ type^+$	By Lemma F.1 (Completing context preserves w.f.)
	$\ \Theta\ \vdash P \ type^+$	By Lemma C.3 (Equality of declarative contexts (weak))
	$\ \Theta\ \vdash [\Theta'] \hat{\alpha} \ type^+$	Substituting for P
	$\ \Theta\ \vdash [\Theta'] \widehat{lpha} \cong^+ [\Theta'] \widehat{lpha}$	By Lemma B.1 (Declarative subtyping is reflexive)
1 37	$\ \Theta\ \vdash [\Theta'][\Theta] \widehat{lpha} \cong^+ [\Theta'] \widehat{lpha}$	As we are in the case that $[\Theta]\hat{\alpha} = \hat{\alpha}$

Case
$$[\Theta]\hat{\alpha} \neq \hat{\alpha}$$
:

	$\ \Theta_{L}\ \vdash [\Theta_{L}] \widehat{lpha} \cong^+ [\Theta_{L}'] \widehat{lpha}$	Inversion on $\Theta \Longrightarrow \Theta'$ (must have instance of Wcsolvedguess,	
		Wcnewunsolvedguess, or Wcnewsolvedguess)	
	$\Theta_{L} \vdash [\Theta_{L}] \hat{\alpha} \ type^{+}$	Inversion on Θ ctx (must have instance of Cwfsolvedguess)	
	$\ \Theta\ \vdash [\Theta] \widehat{lpha} \cong^+ [\Theta'] \widehat{lpha}$	By Lemma A.4 (Declarative subtyping weakening) and	
		Lemma D.5 (Applying a context to a ground type)	
67	$\ \Theta\ \vdash [\Theta'][\Theta] \widehat{lpha} \cong^+ [\Theta'] \widehat{lpha}$	By Lemma D.5 (Applying a context to a ground type)	

• Case
$$\frac{\Theta \vdash N \text{ type}^-}{\Theta \vdash \downarrow N \text{ type}^+} \text{ Twfshift} \downarrow$$

	$\Theta \vdash N \ type^-$	Subderivation
	$\Theta \Longrightarrow \Theta'$	Assumption
	[Θ′]↓N ground	Assumption
	$[\Theta']$ N ground	By definition of ground
	Θctx	Assumption
	Θ' ctx	Assumption
	$\ \Theta\ \vdash [\Theta'][\Theta] N \cong^{-} [\Theta'] N$	By i.h.
RF.	$\left\ \Theta\right\ \vdash [\Theta'][\Theta]{\downarrow}N \cong^+ [\Theta']{\downarrow}N$	By $\leq^{\pm} D$ shift \downarrow and definition of $[-]-$

• **Case** $\frac{\Theta, \alpha \vdash N \text{ type}^-}{\Theta \vdash \forall \alpha. N \text{ type}^-} \text{ Twfforall}$

$\Theta, \alpha \vdash N \text{ type}^-$	Subderivation
$\Theta \Longrightarrow \Theta'$	Assumption
$\Theta, \alpha \Longrightarrow \Theta', \alpha$	By Wcuvar
$[\Theta'] \forall \alpha. N \text{ ground}$	Assumption
$[\Theta', \alpha]$ N ground	By definition of ground
Θ ctx	Assumption

$$\mathbb{I} = \|\Theta\| \vdash [\Theta'][\Theta](P \to N) \cong^{-} [\Theta'](P \to N) \quad By \leq^{\pm} Darrow and definition of [-]-$$

• Case $\frac{\Theta \vdash P \text{ type}^+}{\Theta \vdash \uparrow P \text{ type}^-} \text{ Twfshift} \uparrow$

Symmetric to Twfshift \downarrow case.

Lemma F.3 (\Longrightarrow leads to isomorphic types (ground)). If:

1. $\Theta \vdash A \text{ type}^{\pm}$

٠

- 2. $[\Theta]$ A ground
- 3. $\Theta \Longrightarrow \Theta'$
- 4. Θctx
- 5. $\Theta' \operatorname{ctx}$

then $\|\Theta\| \vdash [\Theta]A \cong^{\pm} [\Theta']A$.

Proof. Corollary of Lemma F.2.

	$\Theta \vdash A \ type^{\pm}$	Assumption
	$\Theta \Longrightarrow \Theta'$	//
	$[\Theta]$ A ground	Assumption
	$[\Theta']A$ ground	By Lemma C.8 (Extending context preserves groundness (weak))
	Θctx	11
	Θ' ctx	11
	$\ \Theta\ \vdash [\Theta'][\Theta]A \cong^{\pm} [\Theta']A$	By Lemma F.2 (\Longrightarrow leads to isomorphic types)
∎§F	$\left\ \Theta\right\ \vdash [\Theta] A \cong^{\pm} [\Theta'] A$	By Lemma D.5 (Applying a context to a ground type)

Lemma F.4 (\longrightarrow leads to isomorphic types). If:

- 1. $\Theta \vdash A \text{ type}^{\pm}$
- $2. \ \Theta \longrightarrow \Theta'$
- 3. $[\Theta']A$ ground
- 4. $\Theta \operatorname{ctx}$
- 5. $\Theta' \operatorname{ctx}$

then $\|\Theta\| \vdash [\Theta'][\Theta]A \cong^{\pm} [\Theta']A$.

Proof. Corollary of Lemma F.2 (\Longrightarrow leads to isomorphic types).

	$\Theta \vdash A \ type^{\pm}$	Assumption
	$\Theta \longrightarrow \Theta'$	Assumption
	$\Theta \Longrightarrow \Theta'$	By Lemma C.1 (\implies subsumes \longrightarrow)
	$[\Theta']A$ ground	Assumption
	Θctx	Assumption
	Θ' ctx	Assumption
∎§F	$\left\ \Theta\right\ \vdash [\Theta'][\Theta] A \cong^{\pm} [\Theta'] A$	By Lemma F.2 (\Longrightarrow leads to isomorphic types)

Lemma F.5 (\longrightarrow leads to isomorphic types (ground)). *If*:

1. $\Theta \vdash A \text{ type}^{\pm}$

- 2. $[\Theta]$ A ground
- 3. $\Theta \longrightarrow \Theta'$
- 4. Θctx
- 5. $\Theta' \operatorname{ctx}$

then $\|\Theta\| \vdash [\Theta]A \cong^{\pm} [\Theta']A$.

Proof. Corollary of Lemma F.3 (\implies leads to isomorphic types (ground)).

$\Theta \vdash A \ type^{\pm}$	Assumption
[Θ]A ground	Assumption
$\Theta \longrightarrow \Theta'$	Assumption
$\Theta \Longrightarrow \Theta'$	By Lemma C.1 (\Longrightarrow subsumes \longrightarrow)
Θ ctx	Assumption
Θ' ctx	Assumption
$\ \Theta\ \vdash [\Theta]A \cong^{\pm} [\Theta']A$	By Lemma F.3 (\Longrightarrow leads to isomorphic types (ground))
	$ \begin{array}{c} [\Theta] A \text{ ground} \\ \Theta \longrightarrow \Theta' \\ \Theta \Longrightarrow \Theta' \\ \Theta \text{ ctx} \\ \Theta' \text{ ctx} \end{array} $

F'.2 Statement

Theorem F.6 (Soundness of algorithmic subtyping). *Given a well-formed algorithmic context* Θ *and a well-formed complete context* Ω *:*

- If $\Theta \vdash P \leq^+ Q \dashv \Theta', \Theta' \longrightarrow \Omega$, P ground, $[\Theta]Q = Q, \Theta \vdash P$ type⁺, and $\Theta \vdash Q$ type⁺, then $\|\Theta\| \vdash P \leq^+ [\Omega]Q$.
- *If* $\Theta \vdash N \leq^{-} M \dashv \Theta', \Theta' \longrightarrow \Omega$, *M* ground, $[\Theta]N = N, \Theta \vdash N$ type⁻, and $\Theta \vdash M$ type⁻, *then* $\|\Theta\| \vdash [\Omega]N \leq^{-} M$.

Proof. By mutual induction on the derivation of $\Theta \vdash P \leq^{\pm} Q \dashv \Theta'$.

• Case

$$\frac{1}{\Theta_L, \alpha, \Theta_R \vdash \alpha \leq^+ \alpha \dashv \Theta_L, \alpha, \Theta_R} \leq^{\pm} \mathsf{Aref}$$

$$\begin{split} & \alpha \in UV(\|\Theta_L, \alpha, \Theta_R\|) & \text{By definition of } [-]-\\ & \|\Theta_L, \alpha, \Theta_R\| \vdash \alpha \text{ type}^+ & \text{By Twfuvar} \\ & \|\Theta_L, \alpha, \Theta_R\| \vdash \alpha \leq^+ \alpha & \text{By } \leq^\pm \text{Drefl} \\ & \text{Im} & \|\Theta_L, \alpha, \Theta_R\| \vdash \alpha \leq^+ [\Omega] \alpha & \text{By Lemma D.5 (Applying a context to a ground type)} \end{split}$$

• Case
$$\frac{\Theta_L \vdash P \text{ type}^+ \quad P \text{ ground}}{\Theta_L, \hat{\alpha}, \Theta_R \vdash P \leq^+ \hat{\alpha} \dashv \Theta_L, \hat{\alpha} = P, \Theta_R} \leq^{\pm} \text{Ainst}$$

 $\begin{array}{ll} \Theta_L, \hat{\alpha} = P, \Theta_R & \longrightarrow \Omega & \quad \mbox{Assumption} \\ \Omega = \Omega_L, \hat{\alpha} = Q, \Omega_R & \quad \mbox{Inversion (must have instance of Csolvedguess)} \end{array}$

$\ \Theta_L\ \vdash P\cong^+Q$	11
$[\Omega] \hat{\alpha} = [\Omega_L, \hat{\alpha} = Q, \Omega_R] \hat{\alpha}$	Substituting for Ω
= Q	By definition of [–]–
$\ \Theta_{L}, \widehat{lpha}, \Theta_{R}\ \vdash P \leq^+ Q$	By Lemma A.4 (Declarative subtyping weakening)
$\ \Omega\ \vdash P \leq^+ [\Omega] \hat{\alpha}$	Substituting using above equations

$$\bullet \ \ \textbf{Case} \ \ \underline{\Theta \vdash M \leq^{-} N \dashv \Theta'} \ \ \underline{\Theta' \vdash N \leq^{-} [\Theta']M \dashv \Theta''} \\ \underline{\Theta \vdash \downarrow N \leq^{+} \downarrow M \dashv \Theta''} \leq^{\pm} \mathsf{Ashift} \downarrow$$

↓N ground	Assumption
$[\Theta]{\downarrow} \mathcal{M} = {\downarrow} \mathcal{M}$	//

We have:

$\Theta \vdash M \leq^{-} N \dashv \Theta'$	Subderivation
Θ ctx	Assumption
N ground	By definition of ground
$[\Theta] \mathcal{M} = \mathcal{M}$	By definition of [—]—

Therefore:

Θ' ctx	By Lemma E.2 (Algorithmic subtyping is w.f.)
$\Theta \longrightarrow \Theta'$	//
$[\Theta']M$ ground	11

We have:

$\Theta' \vdash N \leq^{-} [\Theta']M \dashv \Theta''$	Subderivation
Θ' ctx	Above
$[\Theta']M$ ground	Above
$[\Theta']N = N$	By Lemma D.5 (Applying a context to a ground type)

Therefore:

 $\Theta' \longrightarrow \Theta''$ By Lemma E.2 (Algorithmic subtyping is w.f.)

Now show the antecedents of the induction hypothesis applied to the first premise of the algorithmic rule:

(1)	Θctx	Above
(2)	Ωctx	Assumption
(3)	$\Theta \vdash M \leq^{-} N \dashv \Theta'$	Subderivation
	$\Theta'' \longrightarrow \Omega$	Assumption
(4)	$\Theta' \longrightarrow \Omega$	By Lemma D.3 (Context extension is transitive)
(5)	N ground	Above
(6)	$[\Theta]\mathcal{M}=\mathcal{M}$	Above
(7)	$\Theta \vdash N \ type^-$	Inversion on assumption (Twfshift))
(8)	$\Theta \vdash M$ type ⁻	11

We conclude:

$\ \Theta\ \vdash [\Omega]M \leq N$ By i.	 applied to first 	t premise, using	(1-8)
--	--------------------------------------	------------------	-------

Show the antecedents of the induction hypothesis applied this time to the second premise of the algorithmic rule:

(9)	Θ' ctx	Above
(10)	Ωctx	Above
(11)	$\Theta' \vdash N \leq^{-} [\Theta']M \dashv \Theta''$	Subderivation
(12)	$\Theta'' \longrightarrow \Omega$	Assumption
(13)	$[\Theta']M$ ground	Above
(14)	$[\Theta']N = N$	Above
(15)	$\Theta' \vdash N \ type^-$	By Lemma D.4 (Context extension preserves w.f.)
(16)	$\Theta' \vdash \mathcal{M}$ type ⁻	By Lemma D.4 (Context extension preserves w.f.)

We conclude:

$\ \Theta'\ \vdash [\Omega] N \leq^{-} [\Theta'] M$	By i.h. applied to second premise, using (9–16)
$\ \Theta'\ \vdash N \leq^{-} [\Theta']M$	By Lemma D.5 (Applying a context to a ground type)
$\leq^{-}[\Omega]M$	By Lemma F.5 (\longrightarrow leads to isomorphic types (ground))
$\ \Theta\ \vdash N \leq^{-} [\Omega] M$	By Lemma D.2 (Equality of declarative contexts)

Applying the declarative rule:

	$\ \Theta\ \vdash {\downarrow} N \leq^+ {\downarrow} [\Omega] M$	$By \leq^{\pm} Dshift \downarrow$
B	$\ \Theta\ \vdash {\downarrow} N \leq^+ [\Omega] {\downarrow} M$	By definition of [—]—

• Case
$$\frac{\Theta, \alpha \vdash N \leq^{-} M \dashv \Theta', \alpha}{\Theta \vdash N \leq^{-} \forall \alpha. M \dashv \Theta'} \leq^{\pm} \mathsf{Aforallr}$$

Θ ctx	Assumption
Θ, α ctx	By Cwfuvar
Ω ctx	Assumption
Ω, α ctx	By Cwfuvar
$\Theta, lpha dash N \leq^{-} M \dashv \Theta', lpha$	Subderivation
$\Theta' \longrightarrow \Omega$	Assumption
$\Theta', \alpha \longrightarrow \Omega, \alpha$	By Cuvar
$\forall \alpha. M \text{ ground}$	Assumption
M ground	Definition of ground
$[\Theta]N = N$	Assumption
$\Theta \vdash N$ type ⁻	Assumption
$\Theta, \alpha \vdash N \ type^-$	By Lemma A.2 (Term well-formedness weakening)
$\Theta \vdash \forall \alpha. M \text{ type}^-$	Assumption
$\Theta, \alpha \vdash M \text{ type}^-$	Inversion (Twfforall)
	By i.h., using (1–8)
$\ \Theta,\alpha\ \vdash \lfloor\Omega\rfloorN\leq^-M$	By definition of [–]–
$\ \Theta\ \vdash [\Omega] N \leq^{-} orall lpha. M$	$By \leq^{\pm} Dforallr$
	$\begin{array}{c} \Theta, \alpha \ \mathrm{ctx} \\ \Omega \ \mathrm{ctx} \\ \Omega, \alpha \ \mathrm{ctx} \\ \Theta, \alpha \vdash \mathrm{N} \leq^{-} \mathrm{M} \dashv \Theta', \alpha \\ \Theta' \longrightarrow \Omega \\ \Theta', \alpha \longrightarrow \Omega, \alpha \\ \forall \alpha. \mathrm{M} \ \mathrm{ground} \\ \Theta', \alpha \longrightarrow \Omega, \alpha \\ \forall \alpha. \mathrm{M} \ \mathrm{ground} \\ [\Theta]\mathrm{N} = \mathrm{N} \\ \Theta \vdash \mathrm{N} \ \mathrm{type}^{-} \\ \Theta, \alpha \vdash \mathrm{N} \ \mathrm{type}^{-} \\ \Theta, \alpha \vdash \mathrm{N} \ \mathrm{type}^{-} \\ \Theta, \alpha \vdash \mathrm{M} \ \mathrm{type}^{-} \\ \Theta, \alpha \vdash \mathrm{M} \ \mathrm{type}^{-} \\ \Theta, \alpha \parallel \vdash [\Omega, \alpha]\mathrm{N} \leq^{-} \mathrm{M} \\ \ \Theta, \alpha\ \vdash [\Omega]\mathrm{N} \leq^{-} \mathrm{M} \end{array}$

• Case
$$\frac{\Theta, \hat{\alpha} \vdash [\hat{\alpha}/\alpha] N \leq^{-} M \dashv \Theta', \hat{\alpha} [= P] \qquad M \neq \forall \alpha. M'}{\Theta \vdash \forall \alpha. N \leq^{-} M \dashv \Theta'} \leq^{\pm} \mathsf{AforallI}$$

Apply well-formedness to the premise:

(1)	$\Theta, \hat{lpha} \vdash [\hat{lpha} / lpha] N \leq^{-} M \dashv \Theta', \hat{lpha} [= P]$	Subderivation
	Θ ctx	Assumption
(2)	$\Theta, \hat{\alpha} \operatorname{ctx}$	By Cwfunsolvedguess
(3)	M ground	Assumption
	$[\Theta] \forall \alpha. N = \forall \alpha. N$	Assumption
(4)	$[\Theta]N = N$	By definition of [–]–
	$\Theta', \hat{lpha} [= P] \operatorname{ctx}$	By Lemma E.2 (Algorithmic subtyping is w.f.), using (1–4)
	$\Theta, {\hat lpha} \longrightarrow \Theta', {\hat lpha} [= P]$	11

Now apply the inductive hypothesis:

(5)	$\Theta, \hat{\alpha}$ ctx	Above
	Ω ctx	Assumption
	$\Theta' \vdash P \ type^+$	Inversion Cwfsolvedguess)
	P ground	11
	$\Theta' \longrightarrow \Omega$	Assumption
	$\Omega \vdash P$ type ⁺	By Lemma D.4 (Context extension preserves w.f.)
(6)	$\Omega, \hat{\alpha} = P ctx$	By Cwfsolvedguess
(7)	$\Theta, \hat{lpha} \vdash [\hat{lpha} / lpha] N \leq^{-} M \dashv \Theta', \hat{lpha} [= P]$	Subderivation
	$\Theta' \longrightarrow \Omega$	Assumption
(8)	$\Theta', \hat{\alpha} [= P] \longrightarrow \Omega, \hat{\alpha} = P$	By Csolveguess/ Csolvedguess
(9)	M ground	Assumption
	$[\Theta] \forall \alpha. N = \forall \alpha. N$	Assumption
	$[\Theta]N = N$	By definition of [–]–
(10)	$[\Theta, \hat{lpha}][\hat{lpha}/lpha] N = [\hat{lpha}/lpha] N$	Θ , $\hat{\alpha}$ ctx, so $\hat{\alpha} \notin EV(\Theta)$
(11)	$\Theta \vdash \forall \alpha. N \text{ type}^-$	Assumption
(12)	$\Theta, \alpha \vdash N \text{ type}^-$	Inversion (Twfforall)
	$\ \Theta, \hat{lpha}\ \vdash [\Omega, \hat{lpha} = P][\hat{lpha}/lpha]N \leq^{-} M$	By i.h., using (5–12)
	$\ \Theta\ \vdash [\Omega, \hat{\alpha} = P][\hat{\alpha}/\alpha]N \leq^{-} M$	By definition of $\ -\ $
	$\alpha \notin \mathrm{UV}(\Theta')$	Since $\alpha \notin UV(\Theta)$ as α fresh
	$[\Omega, \hat{\alpha} = P][\hat{\alpha}/\alpha]N = [\Omega][P/\hat{\alpha}][\hat{\alpha}/\alpha]N$	
	$= [\Omega][P/\hat{\alpha}][P/\alpha]N$	
	$= [\Omega][P/\alpha][P/\hat{\alpha}]N$	$\Theta' \vdash P \operatorname{type}^+$ and $\alpha \notin \operatorname{UV}(\Theta')$, so $\alpha \notin \operatorname{FUV}(P)$.
		Also P ground, so $\hat{\alpha} \notin FEV(P)$.
	$= [\Omega][P/\alpha]N$	Since $\hat{\alpha}$ fresh, $\hat{\alpha} \notin \text{FEV}(N)$
	$= [([\Omega]P)/\alpha][\Omega]N$	Since context application does not replace universal variables
	$\ \Theta\ \vdash [([\Omega] P) / \alpha] [\Omega] N \leq^{-} M$	Substituting for $[\Omega, \hat{\alpha} = P][\hat{\alpha}/\alpha]N$
	O + (Z) / A Z = W $\Theta' \vdash P \text{ type}^+$	Above
	o type	

P groundAbove
$$\|\Theta'\| \vdash P$$
 type+By Lemma F.1 (Completing context preserves w.f.) $\|\Theta\| \vdash P$ type+By Lemma D.2 (Equality of declarative contexts) $\|\Theta\| \vdash [\Omega]P$ type+By Lemma D.5 (Applying a context to a ground type) $\|\Theta\| \vdash \forall \alpha. [\Omega]N \leq^{-} M$ By \leq^{\pm} Dforalll $\|\Theta\| \vdash [\Omega] \forall \alpha. N \leq^{-} M$ By definition of $[-]-$

• Case
$$\frac{\Theta \vdash Q \leq^{+} P \dashv \Theta' \quad \Theta' \vdash [\Theta'] N \leq^{-} M \dashv \Theta''}{\Theta \vdash P \to N \leq^{-} Q \to M \dashv \Theta''} \leq^{\pm} \mathsf{Aarrow}$$

$Q \rightarrow M$ ground	Assumption
$[\Theta](P\toN)=P\toN$	Assumption
$\Theta \vdash P \to N \ type^-$	Assumption
$\Theta \vdash Q \to M \ type^-$	Assumption

We have:

$$\begin{array}{lll} \Theta \vdash Q \leq^+ P \dashv \Theta' & Subderivation \\ & \Theta \ ctx & Assumption \\ & Q \ ground & Since \ Q \rightarrow M \ ground \\ & [\Theta]P = P & By \ definition \ of \ [-]- \end{array}$$

Therefore by well-formedness:

 Θ' ctx By Lemma E.2 (Algorithmic subtyping is w.f.) $\Theta \longrightarrow \Theta'$ ''

We have:

$$\begin{split} \Theta' \vdash [\Theta'] N &\leq^{-} M \dashv \Theta'' & \text{Subderivation} \\ \Theta' \text{ ctx} & \text{Above} \\ M \text{ ground} & \text{Since } Q \to M \text{ ground} \\ [\Theta'] [\Theta'] N &= [\Theta'] N & \text{By Lemma D.6 (Context application is idempotent)} \end{split}$$

Therefore by well-formedness:

 $\Theta' \longrightarrow \Theta''$ By Lemma E.2 (Algorithmic subtyping is w.f.)

Applying the induction hypothesis to the first premise:

$\Theta'' \longrightarrow \Omega$	Assumption
$\Theta' \longrightarrow \Omega$	By Lemma D.3 (Context extension is transitive)
$\Theta \vdash Q \ type^+$	Inversion (Twfarrow)
$\Theta \vdash P \ type^+$	//
Ω ctx	Assumption
$\ \Theta\ \vdash Q \leq^+ [\Omega] P$	By i.h. applied to first premise

Applying the induction hypothesis to the second premise:

 $\Theta'' \longrightarrow \Omega$ Assumption

 $\begin{array}{ll} \Theta \vdash N \ type^{-} & Inversion \ (\mathsf{Twfarrow}) \\ \Theta \vdash M \ type^{-} & '' \\ \Omega \ ctx & Assumption \\ \|\Theta'\| \vdash [\Omega][\Theta']N \leq^{-}M & By \ i.h. \ applied \ to \ second \ premise \end{array}$

Rework the second declarative judgment:

$\Theta' \longrightarrow \Omega$	Above
$\ \Theta'\ \vdash [\Omega] N \leq^{-} [\Omega] [\Theta'] N$	By Lemma F.4 (\longrightarrow leads to isomorphic types)
\leq^- M	By Lemma B.7 (Declarative subtyping is transitive)
$\ \Theta\ \vdash [\Omega] N \leq^{-} M$	By Lemma D.2 (Equality of declarative contexts)

Finally, apply the declarative rule:

$$\begin{split} \|\Theta\| \vdash [\Omega] P \to [\Omega] N \leq^{-} Q \to M \qquad & By \leq^{\pm} \mathsf{Darrow} \\ \texttt{IS} \qquad & \|\Theta\| \vdash [\Omega] (P \to N) \leq^{-} Q \to M \qquad & By \ definition \ of \ [-] - \end{split}$$

• Case
$$\frac{\Theta \vdash Q \leq^{+} P \dashv \Theta' \quad \Theta' \vdash [\Theta']P \leq^{+} Q \dashv \Theta''}{\Theta \vdash \uparrow P \leq^{-} \uparrow Q \dashv \Theta''} \leq^{\pm} \mathsf{Ashift} \uparrow$$

Symmetric to $\leq^{\pm} Ashift \downarrow case$.

G' Completeness of subtyping

G'.1 Lemmas for completeness

Lemma G.1 (Completion preserves w.f.). *If* Θ ctx, $\Theta \vdash A$ type[±], and $\Theta \longrightarrow \Omega$, then $\|\Theta\| \vdash [\Omega]A$ type[±].

Proof. Corollary of Lemma F.1 (Completing context preserves w.f.).

By $\Theta \vdash A$ type[±], all existential variables in A will appear in Θ . By $\Theta \longrightarrow \Omega$, these will also all appear in Ω as ground types. Therefore $[\Omega]A$ must be ground. Then:

$\Theta \vdash A$ type [±]	Assumption
$\Theta \vdash [\Omega] A$ type [±]	By Lemma E.1 (Applying context to the type preserves w.f.)
$[\Omega]A$ ground	Above
$\ \Theta\ \vdash [\Omega]A \text{ type}^{\pm}$	By Lemma F.1 (Completing context preserves w.f.)

Lemma G.2 (Extension solving guess). If Θ_L , $\hat{\alpha}$, $\Theta_R \longrightarrow \Omega_L$, $\hat{\alpha} = Q$, Ω_R and $[\Omega_L]\Theta_L \vdash P \cong^+ Q$, then Θ_L , $\hat{\alpha} = P$, $\Theta_R \longrightarrow \Omega_L$, $\hat{\alpha} = Q$, Ω_R .

Proof. By structural induction on Θ_R .

• Case $\Theta_R = \cdot$:

	$\Theta_L, \hat{lpha} \longrightarrow \Omega_L, \hat{lpha} = Q$	Assumption
	$\Theta_L \longrightarrow \Omega_L$	Inversion (Csolveguess)
	$[\Omega_L]\Theta_L\vdash P\cong^+ Q$	Assumption
B	$\Theta_L, \hat{\alpha} = P \longrightarrow \Omega_L, \hat{\alpha} = Q$	By Csolvedguess

• Case $\Theta_R = \Theta'_R, \alpha$:

 $\begin{array}{lll} \Theta_L, \hat{\alpha}, \Theta_R', \alpha & \longrightarrow \Omega_L, \hat{\alpha} = Q, \Omega_R', \alpha & & \text{By structure of } \Theta_R, \text{ must have instance of } \\ & & Cuvar \\ & & [\Omega_L] \Theta_L \vdash P \cong^+ Q & & \text{Assumption} \\ & & \Theta_L, \hat{\alpha}, \Theta_R' & \longrightarrow \Omega_L, \hat{\alpha} = Q, \Omega_R' & & \text{Inversion (Cuvar)} \\ & & \Theta_L, \hat{\alpha} = P, \Theta_R' & \longrightarrow \Omega_L, \hat{\alpha} = Q, \Omega_R' & & \text{By i.h.} \\ & & & & \Theta_L, \hat{\alpha} = P, \Theta_R', \alpha & \longrightarrow \Omega_L, \hat{\alpha} = Q, \Omega_R', \alpha & & \text{By Cuvar} \end{array}$

• Case $\Theta_{R} = \Theta'_{R}, \hat{\beta}$:

 $\begin{array}{ccc} \Theta_L, \hat{\alpha}, \Theta_R', \hat{\beta} & \longrightarrow \Omega_L, \hat{\alpha} = Q, \Omega_R', \hat{\beta} = \mathsf{R} & \mbox{By structure of } \Theta_R, \mbox{must have instance of } & \mbox{Csolveguess} \\ & & & & \mbox{[} \Omega_L] \Theta_L \vdash \mathsf{P} \cong^+ Q & \mbox{Assumption} \\ & & & \Theta_L, \hat{\alpha}, \Theta_R' & \longrightarrow \Omega_L, \hat{\alpha} = Q, \Omega_R' & \mbox{Inversion (Csolveguess)} \\ & & \Theta_L, \hat{\alpha} = \mathsf{P}, \Theta_R' & \longrightarrow \Omega_L, \hat{\alpha} = Q, \Omega_R' & \mbox{By i.h.} \\ & & & & \mbox{Implies } \Theta_L, \hat{\alpha} = \mathsf{P}, \Theta_R', \hat{\beta} & \longrightarrow \Omega_L, \hat{\alpha} = Q, \Omega_R', \hat{\beta} = \mathsf{R} & \mbox{By Csolveguess} \end{array}$

• **Case**
$$\Theta_{\mathsf{R}} = \Theta'_{\mathsf{R}}, \hat{\beta} = \mathsf{R}$$
:

 $\Theta_{L}, \hat{\alpha}, \Theta_{R}', \hat{\beta} = R \longrightarrow \Omega_{L}, \hat{\alpha} = Q, \Omega_{R}', \hat{\beta} = S$ By structure of Θ_{R} , must have instance of Csolvedguess 11 $[\Omega_{\mathrm{I}}, \hat{\alpha} = \mathrm{Q}, \Omega_{\mathrm{R}}'](\Theta_{\mathrm{I}}, \hat{\alpha}, \Theta_{\mathrm{R}}') \vdash \mathrm{R} \cong^{+} \mathrm{S}$ $[\Omega_L]\Theta_L \vdash P \cong^+ Q$ Assumption $\Theta_L, \hat{\alpha}, \Theta'_R \longrightarrow \Omega_L, \hat{\alpha} = Q, \Omega'_R$ Inversion (Csolveguess)
$$\begin{split} \Theta_L, \hat{\alpha} = P, \Theta_R' & \longrightarrow \Omega_L, \hat{\alpha} = Q, \Omega_R' \\ [\Omega_L, \hat{\alpha} = Q, \Omega_R'] (\Theta_L, \hat{\alpha} = P, \Theta_R') \vdash R \cong^+ S \end{split}$$
By i.h. Since [-]- ignores existential variables $\Theta_L, \hat{\alpha} = P, \Theta_R', \hat{\beta} = R \longrightarrow \Omega_L, \hat{\alpha} = Q, \Omega_R', \hat{\beta} = S$ By Csolvedguess

Lemma G.3 (Context extension substitution size). If:

1. $\Theta \operatorname{ctx}$

3

2. $\Theta \vdash A$ type[±]

- $\textbf{3. }\Theta \longrightarrow \Omega$
- 4. $\Omega \operatorname{ctx}$

then $|[\Omega][\Theta]A|_{NO} = |[\Omega]A|_{NO}$.

Proof. Corollary of Lemma F.4 (\rightarrow leads to isomorphic types) and Lemma B.6 (Isomorphic types are the same size).

$\Theta \vdash A \ type^{\pm}$	Assumption
$[\Omega]A$ ground	Ω completes all free existential variables in A
$\Theta \longrightarrow \Omega$	11
$\ \Theta\ \vdash [\Omega][\Theta]A \cong^{\pm} [\Omega]A$	By Lemma F.4 (\longrightarrow leads to isomorphic types)
Θ ctx	Assumption
$\Theta \vdash [\Theta] A \text{ type}^{\pm}$	By Lemma E.1 (Applying context to the type preserves w.f.)
$\ \Theta\ \vdash [\Omega][\Theta]A \text{ type}^{\pm}$	By Lemma G.1 (Completion preserves w.f.)
Ω ctx	Assumption
$\ \Theta\ \vdash [\Omega]A \text{ type}^{\pm}$	By Lemma G.1 (Completion preserves w.f.)
$\mathbf{reg} \qquad [\Omega][\Theta]A _{\mathrm{NQ}} = [\Omega]A _{\mathrm{NQ}}$	By Lemma B.6 (Isomorphic types are the same size)

Lemma G.4 (Context extension ground substitution size). If:

- 1. $\Theta \operatorname{ctx}$
- 2. $\Theta \vdash A$ type[±]
- 3. $[\Theta]$ A ground
- $\textbf{4. }\Theta \longrightarrow \Omega$
- 5. Ωctx

then $|[\Theta]A|_{NO} = |[\Omega]A|_{NO}$.

Proof. Corollary of Lemma G.4 (Context extension ground substitution size).

$$\begin{split} & |[\Omega][\Theta]A|_{_{NQ}} = |[\Omega]A|_{_{NQ}} & \text{By Lemma B.6 (Isomorphic types are the same size)} \\ & & |[\Theta]A|_{_{NO}} = |[\Omega]A|_{_{NO}} & \text{By Lemma D.5 (Applying a context to a ground type)} \end{split}$$

G'.2 Statement

Theorem G.5 (Completeness of algorithmic subtyping). If Θ ctx, $\Theta \longrightarrow \Omega$, and Ω ctx, then:

- If $\|\Theta\| \vdash P \leq^+ [\Omega]Q$, $\Theta \vdash P$ type⁺, $\Theta \vdash Q$ type⁺, P ground, and $[\Theta]Q = Q$, then $\exists \Theta'$ such that $\Theta \vdash P \leq^+ Q \dashv \Theta'$ and $\Theta' \longrightarrow \Omega$.
- If $\|\Theta\| \vdash [\Omega]N \leq M$, $\Theta \vdash M$ type⁻, $\Theta \vdash N$ type⁻, M ground, and $[\Theta]N = N$, then $\exists \Theta'$ such that $\Theta \vdash N \leq M \dashv \Theta'$ and $\Theta' \longrightarrow \Omega$.

Proof. By mutual rule induction on the declarative judgment weighted by the lexicographic ordering of $(|P|_{NQ}, NPQ(P) + NPQ(Q))$ in the positive case where we have $||\Theta|| \vdash P \leq^+ [\Omega]Q$, and $(|M|_{NQ}, NPQ(N) + NPQ(M))$ in the negative case where we have $||\Theta|| \vdash [\Omega]N \leq^- M$.

Firstly consider the case where $B=\hat{\alpha}.$ Suppose $[\Omega]\hat{\alpha}=Q^{\,\prime}:$

	$\Theta = \Theta_{L}, \hat{\alpha}, \Theta_{R}$	Since $\Theta \vdash \hat{\alpha}$ type ⁺ and $[\Theta]\hat{\alpha} = \hat{\alpha}$ by assumption
	$\Omega = \Omega_L, \hat{\alpha} = Q', \Omega_R$	Since $[\Omega]\hat{\alpha} = Q'$
	$\Omega_L \vdash Q'$ type ⁺	Inversion on Ω ctx (Cwfsolvedguess)
	Q′ ground	11
	$\Theta_L, \hat{\alpha}, \Theta_R \longrightarrow \Omega_L, \hat{\alpha} = Q', \Omega_R$	Assumption
	$\Theta_L \longrightarrow \Omega_L$	Inversion (must have instance of Csolveguess)
	$\Theta_L \vdash Q' \ type^+$	By the rules defining \longrightarrow , each uvar in Ω_L must appear
		in Θ_{L}
	$\ \Theta\ \vdash P \leq^+ Q^{ \prime}$	Assumption
	P ground	11
	$FUV(P) \subseteq UV(\Theta_L)$	Since $\ \Theta\ \vdash P \leq^+ Q'$ and $\Theta_L \vdash Q'$ type ⁺
	$FEV(P)\subseteq EV(\Theta_L)$	$FEV(P) = \emptyset$ since P ground
	$\Theta \vdash P$ type ⁺	Assumption
	$\Theta_L \vdash P \ type^+$	By above three equations
RF	$\Theta_{L}, \hat{\alpha}, \Theta_{R} \vdash P \leq^{+} \hat{\alpha} \dashv \Theta_{L}, \hat{\alpha} = P, \Theta_{R}$	$By \leq^{\pm} Ainst$
	$\ \Theta\ \vdash Q' \leq^+ P$	By Lemma B.4 (Symmetry of positive declarative subtyping)
	$\ \Theta\ \vdash P \cong^+ Q'$	Since we have both the component judgments
	$[\Omega]\Theta_{L}\vdashP\cong^{+}Q'$	Since $\ \Theta\ \vdash P \cong^+ Q'$, $\Theta_L \vdash P$ type ⁺ , and $\Theta_L \vdash Q'$ type ⁺
	$[\Omega_L]\Theta_L \vdash P \cong^+ Q'$	Since $\Theta_L \longrightarrow \Omega_L$, $\Theta_L \vdash P$ type ⁺ , and $\Theta_L \vdash Q'$ type ⁺
	$\Theta_L, \hat{\alpha}, \Theta_R \longrightarrow \Omega_L, \hat{\alpha} = Q', \Omega_R$	Above
I\$₹	$\Theta_L, \hat{\alpha} = P, \Theta_R \longrightarrow \Omega_L, \hat{\alpha} = Q', \Omega_R$	By Lemma G.2 (Extension solving guess)

Now consider the cases where $B\neq\hat{\alpha}$:

• Case
$$\frac{\|\Theta\| \vdash \alpha \operatorname{type}^{+}}{\|\Theta\| \vdash \alpha \leq^{+} [\Omega] \alpha} \leq^{\pm} \operatorname{Drefl}$$
$$\|\Theta\| \vdash \alpha \operatorname{type}^{+} \qquad \text{Subderivation}$$
$$\alpha \in \operatorname{UV}([\Omega]\Theta) \qquad \text{Inversion (Twfuvar)}$$
$$\alpha \in \operatorname{UV}(\Theta) \qquad \text{By definition of } [-]-$$
$$\Theta = \Theta_{L}, \alpha, \Theta_{R} \qquad \text{Since } \alpha \in \operatorname{UV}(\Theta)$$
$$\blacksquare \qquad \Theta_{L}, \alpha, \Theta_{R} \vdash \alpha \leq^{+} \alpha \dashv \Theta_{L}, \alpha, \Theta_{R} \qquad \text{By } \leq^{\pm} \operatorname{Arefl}$$
$$\blacksquare \qquad \Theta_{L}, \alpha, \Theta_{R} \longrightarrow \Omega \qquad \text{Assumption}$$

• Case
$$\begin{array}{c} \|\Theta\| \vdash [\Omega]M \leq^{-} N & \|\Theta\| \vdash N \leq^{-} [\Omega]M \\ \hline \|\Theta\| \vdash \downarrow N \leq^{+} [\Omega] \downarrow M \\ \\ \Theta \vdash \downarrow N \ type^{+} & Assumption \\ \Theta \vdash \downarrow M \ type^{+} & Assumption \end{array}$$

$\downarrow N$ $[\Theta] \downarrow \mathcal{M} =$	ground ↓M	Assumption Assumption
$\Theta \vdash M$ $\Theta \vdash N$	ctx type [_] type [_]	Subderivation Assumption Inversion (Twfshift↓)
	ctx ground M	Assumption " By definition of ground By definition of [-]- By i.h. (the type size of the ground side type in the declarative
$\Theta \longrightarrow$	ctx	judgment has decreased) " By Lemma E.2 (Algorithmic subtyping is w.f.) " "
$\begin{split} \ \Theta\ \vdash N \leq^- \\ \ \Theta'\ \vdash N \leq^- \\ \ \Theta'\ \vdash [\Theta']M \cong^- \end{split}$	$[\Omega]M$	Subderivation By Lemma D.2 (Equality of declarative contexts) By Lemma F.5 (\longrightarrow leads to isomorphic types (ground))
$\begin{array}{c} \Theta' \vdash N \\ \ \Theta'\ \vdash N \\ \Theta' \vdash M \\ \ \Theta'\ \vdash [\Omega]M \\ \Theta' \vdash [\Theta']M \\ \ \Theta'\ \vdash [\Theta']M \\ \ \Theta'\ \vdash [\Theta']M \\ \ \Theta'\ \vdash N \leq^{-1} \end{array}$	type ⁻ type ⁻ type ⁻ type ⁻	By Lemma D.4 (Context extension preserves w.f.) By Lemma F.1 (Completing context preserves w.f.) By Lemma D.4 (Context extension preserves w.f.) By Lemma G.1 (Completion preserves w.f.) By Lemma E.1 (Applying context to the type preserves w.f.) By Lemma F.1 (Completing context preserves w.f.) By Lemma B.7 (Declarative subtyping is transitive)
$ \begin{array}{c} \Theta' \vdash N \\ \Theta' \vdash [\Theta']M \\ \Theta' \longrightarrow \\ \Omega \end{array} $	ctx type ⁻ type ⁻ Ω ctx ground	By Lemma D.5 (Applying a context to a ground type) Above Above Above Above Above Above By Lemma D.5 (Applying a context to a ground type)
<	$ \frac{ N _{NQ}}{ UN _{NQ}} $	By Lemma G.4 (Context extension ground substitution size) By Lemma B.6 (Isomorphic types are the same size) By definition of $ - _{NQ}$ By i.h. (the type size of the ground side type in the declarative judgment has decreased)
$\Theta \vdash \downarrow N \leq^+$		$\mathrm{By} \leq^{\pm} Ashift \downarrow$

• Case
$$\begin{array}{c} \|\Theta, \alpha\| \vdash [\Omega] N \leq^{-} M \\ \|\Theta\| \vdash [\Omega] N \leq^{-} \forall \alpha. M \leq^{\pm} D \text{forallr} \end{array}$$

$$\begin{array}{c} \Theta \text{ ctx} & \text{Assumption} \\ \Theta \vdash N \text{ type}^{-} & \text{Assumption} \\ \Theta \vdash \forall \alpha. M \text{ type}^{-} & \text{Assumption} \\ \Theta \rightarrow \Omega & \text{Assumption} \\ \Theta \rightarrow \Omega & \text{Assumption} \\ \Omega \text{ ctx} & \text{Assumption} \\ \forall \alpha. M \text{ ground} & \text{Assumption} \\ |\Theta, \alpha\| \vdash [\Omega] N \leq^{-} M & \text{Subderivation} \\ \|\Theta, \alpha\| \vdash [\Omega, \alpha] N \leq^{-} M & \text{By definition of } [-]- \\ \Theta, \alpha \text{ ctx} & \text{By Cwfuvar} \\ \Theta, \alpha \vdash N \text{ type}^{-} & \text{By Lemma A.2 (Term well-formedness weakening)} \\ \Theta, \alpha \leftarrow M \text{ type}^{-} & \text{Inversion (Twfforall)} \\ \Theta, \alpha \leftarrow M \text{ type}^{-} & \text{Inversion (Twfforall)} \\ \Theta, \alpha \leftarrow N \chi pe^{-} & \text{M By definition of } [-]- \\ \Theta, \alpha \leftarrow N \chi pe^{-} & \text{By Cuvar} \\ \Omega, \alpha \text{ ctx} & \text{By Cwfuvar} \\ M \text{ ground} & \text{By definition of foround} \\ [\Theta, \alpha] N = N & \text{By definition of foround} \\ [\Theta, \alpha]$$

ß

• Case $\frac{\|\Theta\| \vdash P \text{ type}^+ \quad \|\Theta\| \vdash [\Omega][P/\alpha]N \leq^- M'}{\|\Theta\| \vdash [\Omega] \forall \alpha. N \leq^- M'} \leq^{\pm} \mathsf{D} \text{forall}$

$$\Theta \| \vdash [\Omega] orall lpha.$$
 N \leq^- M'

Proof by induction on the number of prenex universal quantifiers in M':

- Case n = 0 (base case). Let M = M':

Θctx	Assumption
$\Theta \longrightarrow \Omega$	Assumption
Ω ctx	Assumption
$\ \Theta\ \vdash P \ type^+$	Subderivation
$\Theta \vdash P \ type^+$	Since P ground, this reduces to
	$FUV(P) \subseteq UV(\Theta)$, which holds since
	$[-]-$ preserves uvars and $FUV(P)\subseteq [\Omega]\Theta$
	(the latter holding by $\ \Theta\ \vdash P$ type ⁺).
$\Theta \vdash \forall \alpha. N \text{ type}^-$	Assumption

$\Theta, \alpha \vdash N \text{ type}^-$ $\Theta \vdash M \text{ type}^-$ $[\Theta] \forall \alpha. N = \forall \alpha. N$ $[\Theta] N = N$	Inversion (Twfforall) Assumption Assumption By definition of [—]—
$egin{array}{l} \ \Theta \ dash [\Omega][P/lpha] N \leq^- M \ [\Omega, \hat{lpha} = P] \Theta, \hat{lpha} dash \end{array}$	Subderivation
$[\Omega, \hat{\alpha} = P][\hat{\alpha}/\alpha]N \leq^{-} M$	Where $\hat{\alpha}$ is fresh
$\Theta, \hat{\alpha}$ ctx	By Cwfunsolvedguess
$\Theta, \hat{\alpha} \vdash [\hat{\alpha}/\alpha] N \text{ type}^-$	Each application of Twfuvar involving α becomes an application of Twfguess involving $\hat{\alpha}$, and $\hat{\alpha} \in EV(\Theta, \hat{\alpha})$
$\Theta, \hat{\alpha} \vdash M \text{ type}^-$	By Lemma A.2 (Term well-formedness weakening)
$\Theta, \hat{\alpha} \longrightarrow \Omega, \hat{\alpha} = P$	By Csolveguess
$\Omega, \hat{\alpha} = P \ ctx$	By Cwfsolvedguess and Lemma D.4 (Context extension preserves w.f.)
M ground	Assumption
$[\Theta, \hat{\alpha}][\hat{\alpha}/\alpha]N = [\hat{\alpha}/\alpha]N$	$\Theta, \hat{\alpha}$ can not solve $\hat{\alpha}$ since $\Theta, \hat{\alpha}$ ctx, and $[\Theta] N = N$
$\Theta, \hat{lpha} \vdash [\hat{lpha} / lpha] {\sf N} \leq^- {\sf M} \dashv \Theta''$	By completeness i.h. (the type size of the ground side type in the declarative judgment is the same, but the total number of prenex quantifiers has decreased by 1)
$\Theta'' \longrightarrow \Omega, \hat{lpha} = P$	11

By inversion on $\Theta'' \longrightarrow \Omega$, $\hat{\alpha} = P$, have $\Theta' \longrightarrow \Omega$ and one of the following cases:

Case $\Theta'' = \Theta', \hat{\alpha} = Q$ and $\|\Theta'\| \vdash Q \cong^+ P$: $\Theta, \hat{\alpha} \vdash [\hat{\alpha} / \alpha] N \leq^{-} M \dashv \Theta', \hat{\alpha} = Q \quad \text{ Substituting for } \Theta''$ $\Theta \vdash \forall \alpha. N \leq M \dashv \Theta'$ $By \leq^{\pm} \mathsf{Aforalll}$ F $\Theta' \longrightarrow \Omega$ Above 6 Case $\Theta'' = \Theta'$, $\hat{\alpha}$ and $\alpha \notin FUV(N)$: $\Theta, \hat{\alpha} \vdash [\hat{\alpha}/\alpha] \mathsf{N} \leq^{-} \mathsf{M} \dashv \Theta', \hat{\alpha} = imes$ Where \times represents "not solved" $\Theta \vdash \forall \alpha. N \leq M \dashv \Theta'$ $By \leq^{\pm} \mathsf{Aforalll}$ ß $\Theta'\,\longrightarrow\Omega$ Above ß

– Case M' has n + 1 prenex universal quantifiers, i.e. $M' = \forall \beta$. M where M has n prenex universal quantifiers:

$\ \Theta,eta\ dash[\Omega]oralllpha$. N $\leq^- M$	Inversion (\leq^{\pm} Dforallr)
$\ \Theta,eta\ dash [\Omega,eta] orall lpha.$ N $\leq^- M$	By definition of [–]–
Θ, β ctx	By Cwfuvar
$\Theta, \beta \vdash \forall \alpha. N type^-$	By Lemma A.2 (Term well-formedness weakening)
$\Theta, \beta \vdash M \text{ type}^-$	Inversion (Twfforall)
$\Theta, eta \longrightarrow \Omega, eta$	By Cuvar
Ω, β ctx	By Cwfuvar
M ground	By definition of ground

$$\begin{split} & [\Theta,\beta]\forall \alpha.\, N = \forall \alpha.\, N & \text{By definition of } [-]-\\ & \Theta,\beta \vdash \forall \alpha.\, N \leq^- M \dashv \Theta'' & \text{By i.h. of induction over prenex universal quantifiers} \\ & \Theta'' \longrightarrow \Omega, \beta & '' \\ & \Theta'' = \Theta', \beta & \text{Inversion (Cuvar)} \\ & \Theta' \longrightarrow \Omega & '' \\ & \Theta,\beta \vdash \forall \alpha.\, N \leq^- M \dashv \Theta', \beta & \text{Substituting for } \Theta'' \\ & \Theta \vdash \forall \alpha.\, N \leq^- \forall \beta.\, M \dashv \Theta' & \text{By } \leq^{\pm} \text{Aforallr} \\ \end{split}$$

$$\begin{array}{cccc} \Theta' & \longrightarrow \Omega & & \text{Above} \\ \Omega & \text{ctx} & & \text{Above} \\ M & \text{ground} & & \text{Since } Q \to M & \text{ground} \\ [\Theta'][\Theta']N = [\Theta']N & & \text{By Lemma D.6 (Context application is idempotent)} \\ \Theta' \vdash [\Theta']N \leq^{-} M \dashv \Theta'' & & \text{By i.h. (the type size of the ground side type of the declarative judgment has decreased)} \\ & & & \Theta'' \longrightarrow \Omega & '' \\ & & & \Theta \vdash P \to N \leq^{-} Q \to M \dashv \Theta'' & & \text{By } \leq^{\pm} \text{Aarrow} \end{array}$$

E

• Case $\frac{\|\Theta\| \vdash Q \leq^+ [\Omega] P \quad \|\Theta\| \vdash [\Omega] P \leq^+ Q}{\|\Theta\| \vdash [\Omega] \uparrow P \leq^- \uparrow Q} \leq^{\pm} \mathsf{Dshift} \uparrow$ $\Theta \vdash \uparrow P \text{ type}^-$ Assumption $\Theta \vdash \uparrow Q \text{ type}^-$ Assumption ↑Q ground Assumption $[\Theta] \uparrow \mathsf{P} = \uparrow \mathsf{P}$ Assumption $\|\Theta\|\vdash Q\leq^+[\Omega]\mathsf{P}$ Subderivation Θ ctx Assumption $\Theta \vdash Q$ type⁺ Since $\Theta \vdash \uparrow Q$ type⁺ $\Theta \vdash P \text{ type}^+$ Since $\Theta \vdash \uparrow P$ type⁺ $\Theta \longrightarrow \Omega$ Assumption Ω ctx Assumption Q ground By definition of ground $[\Theta]P = P$ By definition of [-]- $\Theta \vdash Q \leq^+ \mathsf{P} \dashv \Theta'$ By i.h. $\Theta'\,\longrightarrow\Omega$ Θ' ctx By Lemma E.2 (Algorithmic subtyping is w.f.) $\Theta \, \longrightarrow \Theta'$ // $[\Theta']$ P ground $\|\Theta\| \vdash [\Omega]P <^+ Q$ Subderivation $\|\Theta'\| \vdash [\Omega]P \leq^+ Q$ By Lemma D.2 (Equality of declarative contexts) $\Theta' \vdash P \text{ type}^+$ By Lemma D.4 (Context extension preserves w.f.) $\|\Theta'\| \vdash [\Theta'] P \cong^+ [\Omega] P$ By Lemma F.5 (\longrightarrow leads to isomorphic types (ground)) $\Theta' \vdash [\Theta'] P$ type⁺ By Lemma E.1 (Applying context to the type preserves w.f.) $\|\Theta'\| \vdash [\Theta'] \mathsf{P} \text{ type}^+$ By Lemma F.1 (Completing context preserves w.f.) $\|\Theta'\| \vdash [\Omega] \mathsf{P} \text{ type}^+$ By Lemma G.1 (Completion preserves w.f.) $\Theta' \vdash Q$ type⁺ By Lemma D.4 (Context extension preserves w.f.) $\|\Theta'\| \vdash Q$ type⁺ By Lemma F.1 (Completing context preserves w.f.) $\|\Theta'\| \vdash [\Theta']P \leq^+ Q$ By Lemma B.7 (Declarative subtyping is transitive) $\|\Theta'\| \vdash [\Theta']P \leq^+ [\Omega]Q$ By Lemma D.5 (Applying a context to a ground type) Θ' ctx Above $\Theta' \vdash [\Theta'] P$ type⁺ By Lemma E.1 (Applying context to the type preserves w.f.) $\Theta' \vdash Q \ type^+$ By Lemma D.4 (Context extension preserves w.f.)

	$\Theta' \longrightarrow \Omega$	Above
	Ω ctx	Above
	$[\Theta']$ P ground	Above
	$[\Theta']Q = Q$	By Lemma D.5 (Applying a context to a ground type)
	$\begin{split} \left \left[\Theta' \right] P \right _{_{NQ}} &= \left \left[\Omega \right] P \right _{_{NQ}} \\ &= \left \left[\Omega \right] Q \right _{_{NQ}} \end{split}$	By Lemma G.4 (Context extension ground substitution size) By Lemma B.6 (Isomorphic types are the same size)
	$< [\Omega] \uparrow Q _{_{NQ}}$	By definition of $\left -\right _{NQ}$
	$\Theta' \vdash [\Theta'] P \leq^+ Q \dashv \Theta''$	By i.h. (the type size of the ground side type of the declarative judgment has decreased)
B	$\Theta'' \longrightarrow \Omega$	//
137 1	$\Theta \vdash \uparrow P \leq^{-} \uparrow Q \dashv \Theta''$	$By \leq^{\pm} Ashift$

H' Determinism of subtyping

Lemma H.1 (Algorithmic subtyping is deterministic).

- If $\Theta \vdash P \leq^+ Q \dashv \Theta'_1$ and $\Theta \vdash P \leq^+ Q \dashv \Theta'_2$, then $\Theta'_1 = \Theta'_2$.
- If $\Theta \vdash N \leq^{-} M \dashv \Theta'_{1}$ and $\Theta \vdash N \leq^{-} M \dashv \Theta'_{2}$, then $\Theta'_{1} = \Theta'_{2}$.

Proof. By rule induction on the first hypothesis.

• Case

$$\overline{\Theta_L, lpha, \Theta_R \vdash lpha \leq^+ lpha \dashv \Theta_L, lpha, \Theta_R} \leq^{\pm} \mathsf{Arefl}$$

$\Theta_{L}, lpha, \Theta_{R} \vdash lpha \leq^+ lpha \dashv \Theta_{L}, lpha, \Theta_{R}$	Assumption
$\Theta_{L}, lpha, \Theta_{R} dash lpha \leq^+ lpha \dashv \Theta_2'$	Assumption

B

 $\Theta_L, \alpha, \Theta_R = \Theta'_2$ By the structure of α , the instantiation above is the only possible instantiation of \leq^+

• Case $\frac{\Theta' \vdash P \, type^+ \quad P \, ground}{\Theta_L, \hat{\alpha}, \Theta_R \vdash P \leq^+ \hat{\alpha} \dashv \Theta_L, \hat{\alpha} = P, \Theta_R} \leq^{\pm} \mathsf{Ainst}$

$$\begin{array}{ll} \Theta_L, \hat{\alpha}, \Theta_R \vdash P \leq^+ \hat{\alpha} \dashv \Theta_L, \hat{\alpha} = P, \Theta_R & \text{Assumption} \\ \Theta_L, \hat{\alpha}, \Theta_R \vdash P \leq^+ \hat{\alpha} \dashv \Theta_2' & \text{Assumption} \end{array}$$

• Case
$$\frac{\Theta \vdash M \leq^{-} N \dashv \Theta'}{\Theta \vdash \downarrow N \leq^{+} \downarrow M \dashv \Theta''} \leq^{\pm} Ashift \downarrow$$

 $\begin{array}{ll} \Theta \vdash {\downarrow}N \leq^+ {\downarrow}M \dashv \Theta'' & \quad \mbox{Assumption} \\ \Theta \vdash {\downarrow}N \leq^+ {\downarrow}M \dashv \Theta''_2 & \quad \mbox{Assumption} \end{array}$

By the structure of $\downarrow N$, the derivation of the second hypothesis must end with an application of the $\leq^{\pm}Ashift \downarrow$ rule.

	$\Theta \vdash M \leq^- N \dashv \Theta'$	Subderivation
	$\Theta \vdash M \leq^{-} N \dashv \Theta'_2$	Subderivation
	$\Theta' = \Theta'_2$	By i.h.
	$\Theta' \vdash N \leq^{-} [\Theta']M \dashv \Theta''$	Subderivation
	$\Theta_2' \vdash N \leq^- [\Theta_2']M \dashv \Theta_2''$	Subderivation
	$\Theta' \vdash N \leq^{-} [\Theta']M \dashv \Theta''_2$	Using $\Theta' = \Theta'_2$
ß	$\Theta''=\Theta_2''$	By i.h.

• Case $\frac{\Theta, \hat{\alpha} \vdash [\hat{\alpha}/\alpha] N \leq^{-} M \dashv \Theta', \hat{\alpha} [= P] \qquad M \neq \forall \beta. M'}{\Theta \vdash \forall \alpha. N \leq^{-} M \dashv \Theta'} \leq^{\pm} \mathsf{AforallI}$

$\Theta \vdash orall lpha.$ N \leq^- M $\dashv \Theta'$	Assumption
$\Theta \vdash orall lpha. N \leq^{-} M \dashv \Theta_2'$	Assumption

By the structure of $\forall \alpha$. N, and since $M \neq \forall \beta$. M', the derivation of the second hypothesis must conclude with an application of \leq^{\pm} AforallI.

 $\begin{array}{ll} \Theta, \hat{\alpha} \vdash [\hat{\alpha}/\alpha] N \leq^{-} M \dashv \Theta', \hat{\alpha} [= P] & \text{Subderivation} \\ \Theta, \hat{\alpha}_2 \vdash [\hat{\alpha}_2/\alpha] N \leq^{-} M \dashv \Theta'_2, \hat{\alpha}_2 [= P_2] & \text{Subderivation} \\ \Theta, \hat{\alpha} \vdash [\hat{\alpha}/\alpha] N \leq^{-} M \dashv \Theta'_2, \hat{\alpha} [= P_2] & \text{Renaming the free existential variable} \\ \Theta', \hat{\alpha} [= P] = \Theta'_2, \hat{\alpha} [= P_2] & \text{By i.h.} \\ \Theta', \hat{\alpha} [= P] = \Theta'_2, \hat{\alpha}_2 [= P_2] & \text{Substituting back the original name } (\hat{\alpha} = \hat{\alpha}_2) \end{array}$

37

• Case $\frac{\Theta, \alpha \vdash N \leq^{-} M \dashv \Theta', \alpha}{\Theta \vdash N \leq^{-} \forall \alpha. M \dashv \Theta'} \leq^{\pm} \mathsf{A} \mathsf{forallr}$

$$\begin{split} \Theta \vdash N &\leq^- \forall \alpha.\, M \dashv \Theta' \quad \text{Assumption} \\ \Theta \vdash N &\leq^- \forall \alpha.\, M \dashv \Theta'_2 \quad \text{Assumption} \end{split}$$

By the structure of $\forall \alpha. M$, the derivation of the second hypothesis must conclude with an application of $\leq^{\pm} A$ forallr.

 $\begin{array}{lll} \Theta, \alpha \vdash \mathsf{N} \leq^{-} \mathsf{M} \dashv \Theta', \alpha & & \text{Subderivation} \\ \Theta, \alpha \vdash \mathsf{N} \leq^{-} \mathsf{M} \dashv \Theta'_2, \alpha & & \text{Subderivation} \\ \Theta', \alpha = \Theta'_2, \alpha & & \text{By i.h.} \\ \blacksquare & & \Theta' = \Theta'_2 & & \text{By above} \end{array}$

• Case
$$\frac{\Theta \vdash Q \leq^{+} P \dashv \Theta' \quad \Theta' \vdash [\Theta'] N \leq^{-} M \dashv \Theta''}{\Theta \vdash P \rightarrow N \leq^{-} Q \rightarrow M \dashv \Theta''} \leq^{\pm} \mathsf{Aarrow}$$

 $\begin{array}{ll} \Theta \vdash P \to N \leq^- Q \to M \dashv \Theta'' & \mbox{Assumption} \\ \Theta \vdash P \to N \leq^- Q \to M \dashv \Theta''_2 & \mbox{Assumption} \end{array}$

By the structure of $P \to N$ and $Q \to M$, the derivation of the second hypothesis must conclude with an application of $\leq^{\pm} Aarrow$.

	$\Theta dash Q \leq^+ P \dashv \Theta'$	Subderivation
	$\Theta \vdash \mathrm{Q} \leq^+ \mathrm{P} \dashv \Theta_2'$	Subderivation
	$\Theta' = \Theta'_2$	By i.h.
	$\Theta' \vdash [\Theta'] N \leq^{-} M \dashv \Theta''$	Subderivation
	$\Theta_2' \vdash [\Theta'] N \leq^- M \dashv \Theta_2''$	Subderivation
	$\Theta' \vdash [\Theta'] N \leq^{-} M \dashv \Theta''_2$	Using $\Theta' = \Theta'_2$
B	$\Theta'' = \Theta''_2$	By i.h.

• Case
$$\frac{\Theta \vdash Q \leq^{+} P \dashv \Theta' \quad \Theta' \vdash [\Theta']P \leq^{+} Q \dashv \Theta''}{\Theta \vdash \uparrow P \leq^{-} \uparrow Q \dashv \Theta''} \leq^{\pm} \mathsf{Ashift} \uparrow$$

 $\begin{array}{ll} \Theta \vdash \uparrow P \leq^- \uparrow Q \dashv \Theta'' & \mbox{Assumption} \\ \Theta \vdash \uparrow P \leq^- \uparrow Q \dashv \Theta''_2 & \mbox{Assumption} \end{array}$

By the structure of $\uparrow P$ and $\uparrow Q$, the derivation of the second hypothesis must conclude with an application of $\leq^{\pm}Ashift\uparrow$.

	$\Theta dash Q \leq^+ P \dashv \Theta'$	Subderivation
	$\Theta \vdash \mathrm{Q} \leq^+ \mathrm{P} \dashv \Theta_2'$	Subderivation
	$\Theta' = \Theta'_2$	By i.h.
	$\Theta' \vdash [\Theta'] P \leq^+ Q \dashv \Theta''$	Subderivation
	$\Theta_2' \vdash [\Theta_2'] P \leq^+ Q \dashv \Theta_2''$	Subderivation
	$\Theta' \vdash [\Theta'] P \leq^{-} Q \dashv \Theta''_2$	Using $\Theta' = \Theta'_2$
ß	$\Theta''=\Theta_2''$	By i.h.

I' Decidability of subtyping

I'.1 Lemmas for decidability

Lemma I.1 (Completed non-ground size bounded by ground size).

- If $\Theta \vdash P \leq^+ Q \dashv \Theta'$, Θ ctx, P ground, and $[\Theta]Q = Q$, then $|[\Theta']Q|_{_{NO}} \leq |P|_{_{NO}}$.
- If $\Theta \vdash N \leq ^{-} M \dashv \Theta'$, $\Theta \text{ ctx}$, M ground, and $[\Theta]N = N$, then $|[\Theta']N|_{_{NO}} \leq |M|_{_{NO}}$.

Proof. Proof sketch by rule induction on algorithmic subtyping judgment. The justification here for using the i.h. omits the reasoning for why the premises of well-formedness must hold for the subderivations if we know that they hold for the conclusion. This reasoning should be identical to that in Lemma E.2 (Algorithmic subtyping is w.f.).

• Case

$$\frac{1}{\Theta_{L}, \alpha, \Theta_{R} \vdash \alpha \leq^{+} \alpha \dashv \Theta_{L}, \alpha, \Theta_{R}} \leq^{\pm} \mathsf{Arefl}$$

$$\begin{split} & [\Theta_L, \alpha, \Theta_R] \alpha = \alpha & \text{By definition of } [-] - \\ & \text{ If } |[\Theta_L, \alpha, \Theta_R] \alpha|_{_{NQ}} \leq |\alpha|_{_{NQ}} & \text{Since the types are equal} \end{split}$$

• Case $\frac{\Theta_L \vdash P \text{ type}^+ \quad P \text{ ground}}{\Theta_L, \hat{\alpha}, \Theta_R \vdash P \leq^+ \hat{\alpha} \dashv \Theta_L, \hat{\alpha} = P, \Theta_R} \leq^{\pm} \text{Ainst}$

$$\begin{split} & [\Theta_L, \hat{\alpha} = P, \Theta_R] \hat{\alpha} = P & \text{By definition of } [-] - \\ & \text{ If } |[\Theta_L, \hat{\alpha} = P, \Theta_R] \hat{\alpha}|_{_{NQ}} \leq |P|_{_{NQ}} & \text{Since the types are equal} \end{split}$$

• Case
$$\frac{\Theta \vdash M \leq^{-} N \dashv \Theta' \quad \Theta' \vdash N \leq^{-} [\Theta']M \dashv \Theta''}{\Theta \vdash \downarrow N \leq^{+} \downarrow M \dashv \Theta''} \leq^{\pm} \mathsf{Ashift} \downarrow$$

$ \begin{array}{c} [\Theta'] M \text{ ground} \\ \Theta' \text{ ctx} \\ \Theta' \longrightarrow \Theta'' \\ \Theta'' \text{ ctx} \end{array} $	By well-formedness on the first premise " By well-formedness on the first and second premises "
$\begin{array}{c} \Theta' \ ctx \\ [\Theta']M \ ground \\ \Theta' \longrightarrow \Theta'' \\ \Theta'' \ ctx \\ [\Theta']M _{_{NQ}} = [\Theta'']M _{_{NQ}} \end{array}$	Above Above Above Above By Lemma G.4 (Context extension ground substitution size)
$\begin{array}{l} \Theta \vdash M \leq^{-} N \dashv \Theta' \\ \left [\Theta''] M \right _{NQ} \leq \left [\Theta'] M \right _{NQ} \\ \leq \left N \right _{NQ} \\ \left [\Theta''] \downarrow M \right _{NQ} \leq \left \downarrow N \right _{NQ} \end{array}$	Subderivation Since the sizes are equal By i.h. By definition of $\left -\right _{NQ}$

• Case
$$\frac{\Theta, \alpha \vdash N \leq^{-} M \dashv \Theta', \alpha}{\Theta \vdash N \leq^{-} \forall \alpha. M \dashv \Theta'} \leq^{\pm} \mathsf{Aforall}$$

R

 $\begin{array}{ll} \Theta, \alpha \vdash N \leq^{-} M \dashv \Theta', \alpha & \text{Subderivation} \\ \left| [\Theta', \alpha] N \right|_{_{NQ}} \leq \left| M \right|_{_{NQ}} & \text{By i.h.} \\ \left[\Theta', \alpha \right] N = \left[\Theta' \right] N & \text{By definition of } [-] - \end{array}$

$$\begin{split} |M|_{_{NQ}} &= \left| \forall \alpha. \ M \right|_{_{NQ}} & \text{ By definition of } \left| - \right|_{_{NQ}} \\ \text{ set } & |[\Theta']N|_{_{NQ}} \leq \left| \forall \alpha. \ M \right|_{_{NQ}} & \text{ Substituting above} \end{split}$$

• Case $\frac{\Theta, \hat{\alpha} \vdash [\hat{\alpha}/\alpha] N \leq^{-} M \dashv \Theta', \hat{\alpha} [= P] \qquad M \neq \forall \alpha. M'}{\Theta \vdash \forall \alpha. N \leq^{-} M \dashv \Theta'} \leq^{\pm} \mathsf{AforallI}$

 $\Theta, \hat{\alpha} \vdash [\hat{\alpha}/\alpha] \mathbb{N} \leq M \dashv \Theta', \hat{\alpha} \models \mathbb{P}$ $|[\Theta', \hat{\alpha}[=P]][\hat{\alpha}/\alpha]N|_{NO} \leq |M|_{NO}$

Case $\alpha \notin FUV(N)$:

 $[\Theta', \hat{\alpha} [= P]][\hat{\alpha}/\alpha]N = [\Theta']N$ $|[\Theta']N|_{NO} \leq |M|_{NO}$ $|[\Theta'] \forall \alpha. N|_{NO} \leq |M|_{NO}$ 5

Case $\alpha \in FUV(N)$:

 $\Theta', \hat{\alpha} [= P] \text{ ctx}$ $[\Theta', \hat{\alpha} = P]][\hat{\alpha}/\alpha]N$ ground $(\Theta', \hat{\alpha} [= P]) = (\Theta', \hat{\alpha} = P)$

$$P \text{ ground}$$
$$[\Theta', \hat{\alpha} = P][\hat{\alpha}/\alpha]N = [\Theta'][P/\hat{\alpha}][\hat{\alpha}/\alpha]N$$
$$= [\Theta'][P/\alpha]N$$
$$= [[\Theta']P/\alpha][\Theta']N$$
$$= [P/\alpha][\Theta']N$$
$$|[\Theta']\forall \alpha. N|_{NQ} = |[\Theta']N|_{NQ}$$
$$\leq |[P/\alpha][\Theta']N|_{NQ}$$

 $= |[\Theta', \hat{\alpha} = P][\hat{\alpha}/\alpha]N|_{_{NO}}$ $\leq \left| M \right|_{_{NQ}}$ $|[\Theta'] \forall \alpha. N|_{NO} \leq |M|_{NO}$ ß

By definition of [-]-Substituting above By definition of $|-|_{NO}$

Subderivation

By i.h.

By Lemma E.2 (Algorithmic subtyping is w.f.) $\alpha \in FUV(N)$ so $\hat{\alpha} \in FEV([\hat{\alpha}/\alpha]N)$. Since $\hat{\alpha}$ is not ground, the context must solve $\hat{\alpha}$ to make $[\Theta', \hat{\alpha} [= P]] [\hat{\alpha} / \alpha] N$ ground. Inversion (Cwfsolvedguess) By definition of [-]-By definition of [-]-Since the type being replaced is a universal variable Since P is ground By definition of $|-|_{NQ}$ The additional substitution cannot decrease the size of the type Above Above By transitivity of \leq

• Case $\frac{\Theta \vdash Q \leq^{+} P \dashv \Theta' \quad \Theta' \vdash [\Theta'] N \leq^{-} M \dashv \Theta''}{\Theta \vdash P \rightarrow N \leq^{-} Q \rightarrow M \dashv \Theta''} \leq^{\pm} \mathsf{Aarrow}$ $\Theta \vdash Q \leq^+ P \dashv \Theta'$ Subderivation
$$\begin{split} \left| \left[\Theta' \right] \mathsf{P} \right|_{_{NQ}} \leq \left| Q \right|_{_{NQ}} \\ \left[\Theta' \right] \mathsf{P} \ ground \end{split}$$
By i.h. By w.f. applied to first subderivation $\Theta' \longrightarrow \Theta''$ By w.f. applied to second subderivation $\left| [\Theta'] \mathbf{P} \right|_{NO} = \left| [\Theta''] \mathbf{P} \right|_{NO}$ By Lemma G.4 (Context extension ground substitution size) $\Theta \vdash [\Theta'] N <^{-} M \dashv \Theta''$ Subderivation $|[\Theta''][\Theta']N|_{NO} \leq |M|_{NO}$ By i.h.

$$\left| \left[\Theta'' \right] \left[\Theta' \right] N \right|_{NO} = \left| \left[\Theta'' \right] N \right|_{NO}$$

By Lemma G.3 (Context extension substitution size)

By definition of $|-|_{NQ}$ Substituting above Using above inequalities By definition of $|-|_{NQ}$

$$\begin{split} |[\Theta''](P \to N)|_{NQ} &= |[\Theta'']P|_{NQ} + |[\Theta'']N|_{NQ} + 1 \\ &= |[\Theta']P|_{NQ} + |[\Theta''][\Theta']N|_{NQ} + 1 \\ &\leq |Q|_{NQ} + |M|_{NQ} + 1 \\ \\ |[\Theta''](P \to N)| &\leq |Q \to M| \end{split}$$

$$\mathbf{E} = |[\Theta''](\mathsf{P} \to \mathsf{N})|_{\mathsf{NQ}} \le |\mathsf{Q} \to \mathsf{M}|_{\mathsf{NQ}}$$

$$\frac{\Theta \vdash Q \leq^{+} P \dashv \Theta' \quad \Theta' \vdash [\Theta']P \leq^{+} Q \dashv \Theta''}{\Theta \vdash \uparrow P \leq^{-} \uparrow Q \dashv \Theta''} \leq^{\pm} \mathsf{Ashift} \uparrow$$

Symmetric to $\leq^{\pm}Ashift \downarrow case$.

I'.2 Statement

•

Lemma I.2 (Decidability of algorithmic subtyping). There exists a total order \Box on well-formed algorithmic subtyping judgments such that for each derivation with subtyping judgment premises A_i and conclusion B, each A_i compares less than B, i.e. $\forall i. A_i \Box B$.

Proof. The ordering is the same lexicographic ordering we used earlier in Lemma B.7 (Declarative subtyping is transitive) and Theorem G.5 (Completeness of algorithmic subtyping):

- $(|\mathsf{P}|_{\mathsf{NO}}, \mathsf{NPQ}(\mathsf{P}) + \mathsf{NPQ}(\mathsf{Q}))$ for positive judgments $\Theta \vdash \mathsf{P} \leq^+ \mathsf{Q} \dashv \Theta'$
- $(|M|_{NO}, NPQ(M) + NPQ(N))$ for negative judgments $\Theta \vdash N \leq M \dashv \Theta'$

In this ordering, NPQ(A) is the number of prenex universal quantifiers in the type A and $|A|_{NQ}$ is the size of the algorithmic type A defined in Lemma I.1 (Completed non-ground size bounded by ground size) (N.B. universal quantifiers do not contribute to this size).

Sketch of this proof: We will prove by rule induction that each subderivation compares less than each conclusion for each derivation of the algorithmic subtyping judgment. We will assume the following additional statements about the judgment being proved in the rule induction (the same assumptions used in Lemma E.2 (Algorithmic subtyping is w.f.)):

 For positive subderivations 	 For negative subderivations
$\Theta \vdash P \leq^+ Q \dashv \Theta'$:	$\Theta \vdash N \leq^{-} M \dashv \Theta'$:
1. Θctx	1. Θ ctx
2. P ground	2. M ground
3. $[\Theta]Q = Q$	3. $[\Theta]N = N$

The subtyping algorithm should first check that these well-formedness assumptions hold for the judgment in question. By the same argument as used in Lemma E.2 (Algorithmic subtyping is w.f.), we can show that they are preserved by the algorithmic subtyping rules from conclusion to subderivations.

- Checking the well-formedness of a type is decidable:
 - Typing contexts are finite, so checking UV and EV is decidable.
 - There is exactly one type well-formedness rule to apply for each type.
 - The application of each rule reduces the natural size of the type (same as |_|_{NQ} except universal quantification contributes to this size).

- Checking whether a type is ground is decidable, since types are finite.
- Checking context well-formedness is decidable.
 - Checking type well-formedness is decidable.
 - Checking whether a type is ground is decidable.
 - There is exactly one rule to apply for each context.
 - The application of each rule for each non-empty context reduces the number of items in the context by 1.
- Applying a context as a substitution to a type is decidable since each rule decreases the lexicographic order (number of free existential variables, number of items in the context). This follows from the requirement that solutions to existential variables are ground.

The subtyping algorithm should then proceed to try and apply algorithmic subtyping rules based on the structure of the types until there are no more subderivations to prove. The structure of the types dictate a single rule to apply at each stage. We now sketch a proof that each derivation of an algorithmic subtyping judgment is finite. As with Lemma I.1 (Completed non-ground size bounded by ground size), we skip justifications for why the same assumptions used in Lemma E.2 (Algorithmic subtyping is w.f.) continue to hold.

The key idea is that at each step in the proof, the subderivation either fails or the algorithm determines that it is derivable. If the first subderivation fails, the algorithm should terminate in a failure state, and therefore we do not need to prove anything about the second subderivation. This allows us to use the first subderivations of the shift rules in the proof that the second subderivations are smaller than the conclusions. We have omitted stating this reasoning in each of the proof cases.

• Case

$$\frac{1}{\Theta_{L}, \alpha, \Theta_{R} \vdash \alpha \leq^{+} \alpha \dashv \Theta_{L}, \alpha, \Theta_{R}} \leq^{\pm} \mathsf{Arefl}$$

No algorithmic subtyping subderivations.

$$\frac{\Theta_{L} \vdash P \text{ type}^{+} \quad P \text{ ground}}{\Theta_{L}, \hat{\alpha}, \Theta_{R} \vdash P \leq^{+} \hat{\alpha} \dashv \Theta_{L}, \hat{\alpha} = P, \Theta_{R}} \leq^{\pm} \text{Ainst}$$

No algorithmic subtyping subderivations.

• Case
$$\frac{\Theta \vdash M \leq^{-} \mathsf{N} \dashv \Theta'}{\Theta \vdash \downarrow \mathsf{N} \leq^{+} \downarrow M \dashv \Theta''} \leq^{\pm} \mathsf{Ashift}_{\downarrow}$$

$$\begin{split} \left|N\right|_{_{NQ}} &= \left|\downarrow N\right|_{_{NQ}} - 1 \quad \text{By definition of } \left|-\right|_{_{NQ}} \\ &< \left|\downarrow N\right|_{_{NQ}} \end{split}$$

Therefore the first subderivation compares less than the conclusion.

$\Theta \vdash M \leq^{-} N \dashv \Theta'$	Subderivation
$ [\Theta']M _{_{ m NO}} \leq N _{_{ m NO}}$	By Lemma I.1 (Completed non-ground size bounded by ground size)
$< \downarrow N _{NO}$	By definition of $\left -\right _{NO}$

Therefore the second subderivation compares less than the conclusion.

• Case

$$\begin{array}{l} \Theta, \alpha \vdash N \leq^{-} M \dashv \Theta', \alpha \\ \hline \Theta \vdash N \leq^{-} \forall \alpha, M \dashv \Theta' \end{array} \leq^{\pm} A \text{forallr} \\ |M|_{NQ} = |\forall \alpha, M|_{NQ} \\ NPQ(M) < NPQ(\forall \alpha, M) \end{array}$$
By definition of $|-|_{NQ}$
The LHS has one fewer prenex quantifier
NPQ(N) + NPQ(M) < NPQ(N) + NPQ(\forall \alpha, M) \end{array}

Therefore the subderivation compares less than the conclusion.

• Case
$$\frac{\Theta, \hat{\alpha} \vdash [\hat{\alpha}/\alpha] N \leq^{-} M \dashv \Theta', \hat{\alpha} [= P] \qquad M \neq \forall \alpha. M'}{\Theta \vdash \forall \alpha. N <^{-} M \dashv \Theta'} \leq^{\pm} \mathsf{AforallII}$$

$$\begin{split} |M|_{_{NQ}} &= |M|_{_{NQ}} \\ NPQ([\hat{\alpha}/\alpha]N) < NPQ(\forall \alpha, N) \quad \text{ The LHS has one fewer prenex quantifier} \end{split}$$

Therefore the subderivation compares less than the conclusion.

• Case
$$\frac{\Theta \vdash Q \leq^{+} P \dashv \Theta' \quad \Theta' \vdash [\Theta'] N \leq^{-} M \dashv \Theta''}{\Theta \vdash P \rightarrow N \leq^{-} Q \rightarrow M \dashv \Theta''} \leq^{\pm} \mathsf{Aarrow}$$

$$\begin{split} \left|Q\right|_{_{NQ}} &= \left|Q \rightarrow M\right|_{_{NQ}} - \left|M\right|_{_{NQ}} - 1 \quad \text{By definition of } \left|-\right|_{_{NQ}} \\ &< \left|Q \rightarrow M\right|_{_{NQ}} \end{split}$$

Therefore the first subderivation compares less than the conclusion.

$$\begin{split} \left| M \right|_{_{NQ}} &= \left| Q \to M \right|_{_{NQ}} - \left| Q \right|_{_{NQ}} - 1 \quad \text{ By definition of } \left| - \right|_{_{NQ}} \\ &< \left| Q \to M \right|_{_{NQ}} \end{split}$$

Therefore the second subderivation compares less than the conclusion.

• Case
$$\frac{\Theta \vdash Q \leq^{+} P \dashv \Theta' \quad \Theta' \vdash [\Theta']P \leq^{+} Q \dashv \Theta''}{\Theta \vdash \uparrow P \leq^{-} \uparrow Q \dashv \Theta''} \leq^{\pm} \mathsf{Ashift} \uparrow$$

$$\begin{split} \left|Q\right|_{_{NQ}} &= \left|\uparrow Q\right|_{_{NQ}} - 1 \quad \text{By definition of } \left|-\right|_{_{NQ}} \\ &< \left|\uparrow Q\right|_{_{NQ}} \end{split}$$

Therefore the first subderivation compares less than the conclusion.

$$\begin{array}{ll} \Theta' \vdash Q \leq^+ P \dashv \Theta' & \text{Subderivation} \\ |[\Theta']P|_{_{NQ}} \leq |Q|_{_{NQ}} & \text{By Lemma I.1 (Completed non-ground size bounded by ground size)} \\ < |\uparrow Q|_{_{NQ}} & \text{By definition of } |-|_{_{NQ}} \end{array}$$

Therefore the second subderivation compares less than the conclusion.

J' Isomorphic types

Lemma J.1 (Isomorphic environments type the same terms). If $\Theta \vdash \Gamma \cong \Gamma'$, then:

- If Θ ; $\Gamma \vdash \nu$: P then $\exists P'$ such that $\Theta \vdash P \cong^{-} P'$ and Θ ; $\Gamma' \vdash \nu$: P'.
- If $\Theta; \Gamma \vdash t : N$ then $\exists N'$ such that $\Theta \vdash N \cong^{-} N'$ and $\Theta; \Gamma' \vdash t : N'$.
- If $\Theta; \Gamma \vdash s : N \gg M$ and $\Theta \vdash N \cong^{-} N'$, then $\exists M'$ such that $\Theta \vdash M \cong^{-} M'$ and $\Theta; \Gamma \vdash s : N' \gg M'$.

Proof. By mutual induction on the checking, synthesis, and spine judgments. We first define notions of the sizes of terms and spines:

|e| The size of the term e

|s| The size of the spine s

x = 1	$ \{t\} = t + 1$
$ \lambda x.t = t + 1$	$ \Lambda \alpha. t = t + 1$
$ return\ v = v + 1$	
let x : P = f(s); t = f + s + t + 1	et $x = f(s); t = f + s + t + 1$
$ \epsilon = 1$	s,v = s + v + 1

We perform the induction using the following metric on judgments:

|J| The size of the judgment J

$$\begin{aligned} |\Theta; \Gamma \vdash \nu : P \dashv \Theta'| &= (|f|, 0) \\ |\Theta; \Gamma \vdash t : N \dashv \Theta'| &= (|t|, 0) \\ |\Theta; \Gamma \vdash t : N \gg M \dashv \Theta'| &= (|t|, NPQ(N)) \end{aligned}$$

• Case
$$\frac{x:P\in\Gamma}{\Theta;\Gamma\vdash x:P} \text{ Dvar}$$

 $x : P \in \Gamma$ Premise $\Theta \vdash \Gamma \cong \Gamma'$ Assumption(1) $x : P' \in \Gamma'$ Inversion (Eisovar) $\square \Theta \vdash P \cong^+ P'$ " $\square \Theta \colon \Gamma' \vdash x : P'$ By Dvar and (1)82

• Case $\frac{\Theta; \Gamma, x: P \vdash t: N}{\Theta; \Gamma \vdash \lambda x: P. t: P \rightarrow N} \text{ } \mathsf{D} \lambda \mathsf{abs}$ $\Theta \vdash \Gamma \cong \Gamma'$ Assumption $\Theta \vdash P \cong^+ P$ By Lemma B.1 (Declarative subtyping is reflexive) $\Theta \vdash \Gamma, x : P \cong \Gamma', x : P$ By Eisovar Θ ; Γ , $x : P \vdash t : N$ Subderivation $\Theta \vdash N \cong^{-} N'$ By i.h. (term size has decreased) 11 $\Theta; \Gamma', x : P \vdash t : N'$

6	$\Theta \vdash P \to N \cong^{-} P \to N'$	$By \leq^{\pm} Darrow$
ß	$\Theta; \Gamma' \vdash \lambda x : P.t \colon P \to N'$	By Dλabs

• Case $\frac{\Theta, \alpha; \Gamma \vdash t: N}{\Theta; \Gamma \vdash \Lambda \alpha. \, t: \forall \alpha. \, N} \, \, \mathsf{Dgen}$

	$\Theta \vdash \Gamma \cong \Gamma'$	Assumption Subderivation
	$egin{array}{llllllllllllllllllllllllllllllllllll$	By i.h. (term size has decreased)
	$\Theta, \alpha; \Gamma' \vdash t : N'$	//
P	$\Theta \vdash orall lpha. N \cong^+ orall lpha. N'$	By \leq^{\pm} Dforalll (using P = α) and \leq^{\pm} Dforallr

 $\Theta; \Gamma' \vdash \Lambda \alpha. t : \forall \alpha. N'$ By Dgen 5

67

• Case $\frac{\Theta; \Gamma \vdash t: N}{\Theta; \Gamma \vdash \{t\}: \downarrow N} \text{ Dthunk}$

 $\Theta \vdash \Gamma \cong \Gamma'$ Assumption $\Theta; \Gamma \vdash t: \mathbb{N}$ Subderivation $\Theta \vdash N \cong^{-} N'$ By i.h. (term size has decreased) $\Theta; \Gamma' \vdash t: N'$ //

- $\Theta \vdash \downarrow N \cong^{-} \downarrow N' \quad By \leq^{\pm} Dshift \downarrow$ 5 By Dthunk $\mathbf{I} = \Theta; \Gamma' \vdash \{t\} : \bigcup N'$
- Case

 $\frac{\Theta; \Gamma \vdash \nu: P}{\Theta; \Gamma \vdash \mathsf{return} \ \nu: \uparrow P} \ \mathsf{Dreturn}$

 $\Theta \vdash \Gamma \cong \Gamma'$ Assumption $\Theta; \Gamma \vdash \nu : \mathsf{P}$ Subderivation $\Theta \vdash P \cong^+ P'$ By i.h. (term size has decreased) $\Theta; \Gamma' \vdash \nu : \mathsf{P}'$ 11

B	$\Theta \vdash \uparrow P \cong^- \uparrow P'$	$By \leq^{\pm} Dshift \uparrow$
ß	$\Theta; \Gamma' \vdash return \ v : \uparrow P'$	By Dreturn

• Case	$\Theta;\Gamma\vdash\nu:{\downarrow}\mathcal{M}$	$\Theta;\Gamma\vdash s:M\gg{\uparrow}Q$	$\Theta \vdash {\uparrow} P \leq^- {\uparrow} Q$	$\Theta; \Gamma, x : P \vdash t : N$	Dambiguouslet
		$\Theta; \Gamma \vdash let \ x : P$	v = v(s); t : N		Dambiguousiet

	$\Theta \vdash \Gamma \cong \Gamma'$	Assumption
(1)	$ \begin{array}{c} \Theta; \Gamma \vdash \nu \colon {\downarrow} \mathcal{M}' \\ \Theta \vdash {\downarrow} \mathcal{M} \cong^+ {\downarrow} \mathcal{M}' \\ \Theta; \Gamma' \vdash \nu \colon {\downarrow} \mathcal{M}' \end{array} $	Subderivation By i.h. (term size has decreased) "
(2)	$\begin{array}{l} \Theta; \Gamma \vdash s \colon M \gg \uparrow Q \\ \Theta \vdash M \cong^{-} M' \\ \Theta \vdash \uparrow Q \cong^{-} \uparrow Q' \\ \Theta; \Gamma' \vdash s \colon M' \gg \uparrow Q' \end{array}$	Subderivation Inversion (\leq^{\pm} Dshift \downarrow) By i.h. (term size has decreased) "
(3)	$egin{array}{lll} \Thetadash \uparrow P \leq^{-} \uparrow Q \ \Thetadash \uparrow P \leq^{-} \uparrow Q' \end{array}$	Premise By Lemma B.7 (Declarative subtyping is transitive)
■≊ (4)	$\begin{split} \Theta &\vdash \Gamma, x : P \cong \Gamma', x : P \\ \Theta; \Gamma, x : P \vdash t : N \\ \Theta &\vdash N \cong^{-} N' \\ \Theta; \Gamma', x : P \vdash t : N' \end{split}$	By Eisovar Subderivation By i.h. (term size has decreased) "
ß	$\Theta; \Gamma' \vdash let \; x : P = \nu(s); t \colon N'$	By Dambiguouslet and (1–4)

• Case

e	Θ; Γ	$\vdash v: \downarrow M$	
$\Theta;\Gamma \vdash s:M \gg {\uparrow} Q$	$\Theta; \Gamma\!\!\!, x:Q \vdash t:N$	$\forall P. \text{ if } \Theta; \Gamma \vdash s : M \gg \uparrow P \text{ then } \Theta \ \vdash \ Q \ \cong^+ \ F$	o - Dunambiguouslet
	$\Theta; \Gamma \vdash let$	x = v(s); t: N	

	$\Theta \vdash \Gamma \cong \Gamma'$	Assumption
(1)	$\begin{array}{c} \Theta; \Gamma \vdash \nu \colon {\downarrow} \mathcal{M} \\ \Theta \vdash {\downarrow} \mathcal{M} \cong^+ {\downarrow} \mathcal{M}' \\ \Theta; \Gamma' \vdash \nu \colon {\downarrow} \mathcal{M}' \end{array}$	Subderivation By i.h. (term size has decreased) "
(2)	$ \begin{array}{l} \Theta; \Gamma \vdash s \colon M \gg \uparrow Q \\ \Theta \vdash M \cong^{-} M' \\ \Theta \vdash \uparrow Q \cong^{-} \uparrow Q' \\ \Theta; \Gamma' \vdash s \colon M' \gg \uparrow Q' \end{array} $	Subderivation Inversion (\leq^{\pm} Dshift↓) By i.h. (term size has decreased) "
∎≊ (3)	$\begin{split} \Theta \vdash Q &\cong^+ Q' \\ \Theta \vdash \Gamma, x : Q &\cong \Gamma', x : Q' \\ \Theta \vdash N &\cong^- N' \\ \Theta; \Gamma', x : Q' \vdash t : N' \end{split}$	Inversion (≤ [±] Dshift↑) By Eisovar By i.h. (term size has decreased) ″

To show the final premise of the Dunambiguouslet rule, let P be arbitrary and assume Θ ; $\Gamma' \vdash s : M' \gg \uparrow P$. Now show that $\Theta \vdash Q' \cong^{-} P$:

$\begin{split} \Theta; \Gamma' \vdash s : M' \gg \uparrow P \\ \Theta \vdash \Gamma &\cong \Gamma' \\ \Theta \vdash M \cong^{-} M' \\ \Theta; \Gamma \vdash s : M \gg \uparrow P' \\ \Theta \vdash \uparrow P \cong^{-} \uparrow P' \end{split}$	Assumption Above Above By i.h. (term size has decreased) "
$ \begin{split} & \Theta \vdash P \cong^{-} P' \\ & \Theta \vdash Q \cong^{-} P' \\ & \Theta \vdash Q \cong^{-} Q' \\ & \Theta \vdash Q' \cong^{-} P \end{split} $	Inversion (≤ [±] Dshift↑) Applying subderivation Above By Lemma B.7 (Declarative subtyping is transitive)

We have now shown the final premise of Dunambiguouslet, so apply it to give the required typing judgment:

■ Θ ; $\Gamma' \vdash \text{let } x : P = v(s)$; t : N' By Dunambiguouslet and (1–3)

• Case

 $\overline{\Theta;\Gamma\vdash\varepsilon:N\gg N}\ \mathsf{Dspinenil}$

$$\begin{split} \Theta &\vdash \Gamma \cong \Gamma' & \text{Assumption} \\ \mathbf{I} & \Theta \vdash N \cong^{-} N' & \text{Assumption} \\ \mathbf{I} & \Theta; \Gamma' \vdash \varepsilon: N' \gg N' & \text{By Dspinenil} \end{split}$$

• Case $\frac{\Theta; \Gamma \vdash \nu : P \quad \Theta \vdash P \leq^+ Q \quad \Theta; \Gamma \vdash s : N \gg M}{\Theta; \Gamma \vdash \nu, s : (Q \rightarrow N) \gg M} \text{ Dspinecons}$

$$\begin{split} &\Theta \vdash \Gamma \,\cong \Gamma' & \text{Assumption} \\ &\Theta \vdash Q \to N \,\cong^- T & \text{Assumption} \end{split}$$

- Case n = 0:

By inversion, $T = \forall \alpha \cdots \forall \beta . P' \rightarrow N'$. Therefore perform induction over the number of prenex universal quantifiers, n:

 $\begin{array}{ll} \mathsf{N} = \mathsf{Q}' \to \mathsf{N}' & & \text{By inversion} \\ \Theta \vdash \mathsf{Q} \to \mathsf{N} \cong^- \mathsf{Q}' \to \mathsf{N}' & & \text{Assumption} \\ \Theta \vdash \mathsf{Q} \cong^+ \mathsf{Q}' & & \text{By inversion} \\ \Theta \vdash \mathsf{N} \cong^- \mathsf{N}' & & \text{By inversion} \\ \end{array}$ $\begin{array}{ll} \Theta \vdash \mathsf{P} \cong^+ \mathsf{P}' & & \text{By outer i.h. (term size has decreased)} \\ (1) & & \Theta; \mathsf{\Gamma}' \vdash \upsilon; \mathsf{P}' & & '' \\ & & \Theta \vdash \mathsf{P} \leq^+ \mathsf{Q} & & \text{Subderivation} \end{array}$

(2)	$\Theta \vdash P' \leq^+ Q'$	By Lemma B.7 (Declarative subtyping is transitive)
∎≊ (3)	$\begin{split} \Theta; \Gamma \vdash s \colon N \gg M \\ \Theta \vdash M \cong^{-} M' \\ \Theta; \Gamma' \vdash s \colon N' \gg M' \end{split}$	Subderivation By outer i.h. (term size has decreased) "
G	$\Theta; \Gamma' \vdash \nu, s \colon Q' \to N' \gg M'$	By Dspinecons and (1–3)
	– Case: $n = k + 1$	
	$T = \forall \alpha T'$	By inversion

$$\begin{array}{ll} \exists \forall \alpha. T' & \text{By inversion} \\ \Theta \vdash P \to N \cong^+ [P/\alpha]T' & \text{By inversion} \\ \Theta; \Gamma' \vdash \nu, s \colon [P/\alpha]T' & \text{By inversion} (\leq^{\pm} \mathsf{D} \mathsf{forallr}), \, \mathsf{for} \; \Theta \vdash \mathsf{P} \; \mathsf{type}^+ \\ \Theta; \Gamma' \vdash \nu, s \colon [P/\alpha]T' \gg \mathcal{M}' & \text{By inner i.h.} \\ \blacksquare & \Theta \vdash \mathcal{M} \cong^- \mathcal{M}' & '' \\ \Theta; \Gamma' \vdash \nu, s \colon (\forall \alpha. T') \gg \mathcal{M}' & \text{By Dspinetypeabs} \\ \blacksquare & \Theta; \Gamma' \vdash \nu, s \colon T \gg \mathcal{M}' & \text{By equality} \end{array}$$

• Case

$$\begin{array}{c} \Theta \vdash P \operatorname{type}^{+} & \Theta; \Gamma \vdash s : [P/\alpha] N \gg M \\ \hline \Theta; \Gamma \vdash s : (\forall \alpha, N) \gg M \end{array} \text{ Dspinetypeabs} \\
\begin{array}{c} \Theta \vdash \Gamma \cong \Gamma' & \text{Assumption} \\ \Theta \vdash \forall \alpha, N \cong^{-} N'' & \text{Assumption} \\ \hline N'' = \forall \beta, N' & \text{Inversion} (\leq^{\pm} D \text{foralll} / \leq^{\pm} D \text{forallr}) \\ \Theta \vdash [P/\alpha] N \cong^{-} [R/\beta] N' & '', \text{ for } \Theta \vdash R \text{ type}^{+} \\ \hline \Theta \vdash M \cong^{-} M' & \text{By i.h. (term size is the same and the number of prenex quantifiers has decreased)} \\
\Theta; \Gamma' \vdash s : [R/\beta] N' \gg M' & \text{By Dspinetypeabs} \\ \hline \Theta; \Gamma' \vdash s : N'' \gg M' & \text{By definition of } N''
\end{array}$$

K' Well-formedness of typing

Lemma K.1 (Well-formedness of restricted contexts). If $\Theta \operatorname{ctx}$, $\Theta' \operatorname{ctx}$, $\Theta \Longrightarrow \Theta'$, then $\Theta' \upharpoonright \Theta \operatorname{ctx}$, $\Theta \longrightarrow \Theta' \upharpoonright \Theta$, and $\Theta' \upharpoonright \Theta \Longrightarrow \Theta'$.

Proof. By rule induction on the $\Theta \implies \Theta'$ judgment.

• Case

 $\xrightarrow[\cdot \implies \cdot]{} \mathsf{Wcempty}$

 $\begin{array}{ccc} \cdot \upharpoonright \cdot = \cdot & & By \upharpoonright empty \\ \texttt{IS} & \cdot & ctx & By Cwfempty \\ \texttt{IS} & \cdot \longrightarrow \cdot & By Cempty \\ \texttt{IS} & \cdot \Longrightarrow \cdot & By Wcempty \end{array}$

• Case $\frac{\Theta \Longrightarrow \Theta'}{\Theta, \alpha \Longrightarrow \Theta', \alpha} \text{ Weuvar}$

Θ,α	ctx	Assumption
Θ	ctx	Inversion (Cwfuvar)
Θ', α	ctx	Assumption
Θ' (ctx	Inversion (Cwfuvar)
$\Theta \Longrightarrow 0$	Θ'	Subderivation
$\begin{array}{c} \Theta \longrightarrow 0 \\ \Theta' \upharpoonright \Theta \\ \Theta' \upharpoonright \Theta \end{array} $	ctx	By i.h. "
$(\Theta', \alpha) \upharpoonright (\Theta, \alpha) = 0$	$(\Theta' \upharpoonright (\Theta, \alpha)), \alpha$	By
$(O \land b \circ O) \rightarrow b$	o.t	Dry Configuration

RF I	$(\Theta' \upharpoonright \Theta), \alpha $ ctx	By Cwfuvar
B	$\Theta, \alpha \longrightarrow (\Theta' \upharpoonright \Theta), \alpha$	By Cuvar
1 37	$(\Theta' \! \upharpoonright \! \Theta), \alpha \Longrightarrow \Theta', \alpha$	By Wcuvar

• Case
$$\frac{\Theta \Longrightarrow \Theta'}{\Theta, \hat{\alpha} \Longrightarrow \Theta', \hat{\alpha}} \text{ Wcunsolvedguess}$$

$\Theta, \hat{\alpha} \operatorname{ctx}$	Assumption
Θ ctx	Inversion (Cwfunsolvedguess)
$\Theta', \hat{\alpha} \operatorname{ctx}$	Assumption
Θ' ctx	Inversion (Cwfunsolvedguess)
$\Theta \Longrightarrow \Theta'$	Subderivation
$\Theta' \upharpoonright \Theta$ ctx	By i.h.
$\Theta \longrightarrow \Theta' \restriction \Theta$	//
$\Theta'\!\upharpoonright\!\Theta\Longrightarrow\Theta'$	//

 $(\Theta', \hat{\alpha}) \upharpoonright (\Theta, \hat{\alpha}) = (\Theta' \upharpoonright \Theta), \hat{\alpha} \quad \text{By } \upharpoonright \text{guessin}$

B	$(\Theta' \upharpoonright \Theta), \hat{\alpha} \operatorname{ctx}$	By Cwfunsolvedguess
13	$\Theta, \hat{lpha} \longrightarrow (\Theta' \!\restriction \Theta), \hat{lpha}$	By Cunsolvedguess
6	$(\Theta'\!\upharpoonright\!\Theta), \hat{lpha} \Longrightarrow \Theta', \hat{lpha}$	By Wcunsolvedguess

• Case $\Theta \longrightarrow \Theta'$

$$\frac{\Theta \Longrightarrow \Theta}{\Theta, \hat{\alpha} \Longrightarrow \Theta', \hat{\alpha} = P}$$
 Wcsolveguess

	$\Theta, \hat{\alpha} \text{ ctx} \\ \Theta \text{ ctx} \\ \Theta', \hat{\alpha} = P \text{ ctx} \\ \Theta' \text{ ctx} \\ \Theta \Longrightarrow \Theta'$	Assumption Inversion (Cwfunsolvedguess) Assumption Inversion (Cwfsolvedguess) Subderivation
	$\begin{array}{c} \Theta' \upharpoonright \Theta \ \operatorname{ctx} \\ \Theta \longrightarrow \Theta' \upharpoonright \Theta \\ \Theta' \upharpoonright \Theta \Longrightarrow \Theta' \end{array}$	By i.h. "
	$(\Theta', \hat{\alpha} = P) \upharpoonright (\Theta, \hat{\alpha}) = (\Theta' \upharpoonright \Theta), \hat{\alpha} = P$	By ∣guessin
67 167 167	$\begin{array}{l} (\Theta' \upharpoonright \Theta), \hat{\alpha} = P \ ctx \\ \Theta, \hat{\alpha} \longrightarrow (\Theta' \upharpoonright \Theta), \hat{\alpha} = P \\ (\Theta' \upharpoonright \Theta), \hat{\alpha} = P \Longrightarrow \Theta', \hat{\alpha} = P \end{array}$	By Cwfsolvedguess By Csolveguess By Wcsolvedguess

• Case
$$\frac{\Theta \Longrightarrow \Theta' \quad \|\Theta\| \vdash P \cong^+ Q}{\Theta, \hat{\alpha} = P \implies \Theta', \hat{\alpha} = Q} \text{ Wcsolvedguess}$$

$\Theta, \hat{\alpha} = P \ ctx$	Assumption
Θctx	Inversion (Cwfsolvedguess)
$\Theta', \hat{lpha} = Q$ ctx	Assumption
Θ' ctx	Inversion (Cwfsolvedguess)
$\Theta \Longrightarrow \Theta'$	Subderivation
$\begin{array}{c} \Theta' \upharpoonright \Theta \ \operatorname{ctx} \\ \Theta \longrightarrow \Theta' \upharpoonright \Theta \\ \Theta' \upharpoonright \Theta \Longrightarrow \Theta' \end{array}$	By i.h. "
$(\Theta', \hat{\alpha} = Q) \upharpoonright (\Theta, \hat{\alpha} = P) = (\Theta' \upharpoonright \Theta), \hat{\alpha} = Q$	By ∣guessin

By Cwfsolvedguess

By Wcsolvedguess

F

137 ß

$$\begin{aligned} \|\Theta\| \vdash P \cong^+ Q & \text{Premise} \\ \Theta, \hat{\alpha} = P & \longrightarrow (\Theta' \upharpoonright \Theta), \hat{\alpha} = Q & \text{By Convolutions} \\ (\Theta' \upharpoonright \Theta), \hat{\alpha} = Q & \implies \Theta', \hat{\alpha} = Q & \text{By Convergences} \end{aligned}$$

 $(\Theta' \upharpoonright \Theta), \hat{\alpha} = Q \operatorname{ctx}$

• Case
$$\frac{\Theta \Longrightarrow \Theta'}{\Theta \Longrightarrow \Theta', \hat{\alpha}} \text{ Wcnewunsolvedguess}$$

 $\hat{\alpha} [= P] \notin \Theta$ Since $\hat{\alpha}$ fresh $(\Theta', \hat{\alpha}) \upharpoonright \Theta = \Theta' \upharpoonright \Theta \quad \text{By} \upharpoonright \text{guessnotin}$

	$\begin{array}{c} \Theta \ \mathrm{ctx} \\ \Theta', \hat{\alpha} \ \mathrm{ctx} \\ \Theta' \ \mathrm{ctx} \\ \Theta \Longrightarrow \Theta' \end{array}$	Assumption Assumption Inversion (Cwfunsolvedguess) Subderivation
19 19	$\begin{array}{c} \Theta' \upharpoonright \Theta \ \operatorname{ctx} \\ \Theta \longrightarrow \Theta' \upharpoonright \Theta \\ \Theta' \upharpoonright \Theta \Longrightarrow \Theta' \\ \Theta' \upharpoonright \Theta \Longrightarrow \Theta', \hat{\alpha} \end{array}$	By i.h. '' By Wcnewunsolvedguess
•	Case $\frac{\Theta \Longrightarrow \Theta'}{\Theta \Longrightarrow \Theta', \hat{\alpha} =}$	— Wcnewsolvedguess P
	$ \begin{aligned} & \hat{\alpha} \left[= Q \right] \notin \Theta \\ & (\Theta', \hat{\alpha} = P) \upharpoonright \Theta = \Theta' \upharpoonright \end{aligned} $	Since $\hat{\alpha}$ fresh Θ By guessnotin
	Θ ctx	Assumption

	Θ ctx	Assumption
	$\Theta', \hat{\alpha} = P \ ctx$	Assumption
	Θ' ctx	Inversion (Cwfsolvedguess)
	$\Theta \Longrightarrow \Theta'$	Subderivation
		D 11
B	$\Theta' \upharpoonright \Theta$ ctx	By i.h.
R	$\Theta \longrightarrow \Theta' {\upharpoonright} \Theta$	//
	$\Theta'\!\!\upharpoonright\!\!\Theta \Longrightarrow \Theta'$	//
1 37	$\Theta' \! \upharpoonright \! \Theta \Longrightarrow \Theta', \hat{\alpha} = P$	By Wcnewsolvedguess

Lemma K.2 (Type well-formed with type variable removed). *If* Θ_L , α , $\Theta_R \vdash T$ type^{\pm} *and* $\alpha \notin$ FUV(T)*, then* Θ_L , $\Theta_R \vdash T$ type^{\pm}.

Proof. By rule induction over the definition of well-formed types.

$$\begin{array}{c} \bullet \ \mbox{Case} \\ \hline & \beta \in FUV(\Theta_L, \alpha, \Theta_R) \\ \hline & \Theta_L, \alpha, \Theta_R \vdash \beta \ type^+ \end{array} \ \mbox{Twfuvar} \\ \\ & \alpha \notin FUV(\beta) & Assumption \\ & \beta \neq \alpha & By \ above \\ \Theta_L, \alpha, \Theta_R \vdash \beta \ type^+ & Assumption \\ & \beta \in FUV(\Theta_L, \Theta_R) & By \ above \ two \ statements \\ \\ \hline \mbox{Iso} & \Theta_L, \Theta_R \vdash \beta \ type^+ & By \ \mbox{Twfuvar} \end{array}$$

• Case
$$\frac{\hat{\alpha} \in FEV(\Theta_L, \alpha, \Theta_R)}{\Theta_L, \alpha, \Theta_R \vdash \hat{\alpha} \, type^+} \; \mathsf{Twfguess}$$

 $\begin{array}{lll} \Theta_L, \alpha, \Theta_R \vdash \hat{\alpha} \mbox{ type}^+ & \mbox{ Assumption} \\ & \hat{\alpha} \in \mbox{FEV}(\Theta_L, \Theta_R) & \mbox{ By above} \\ \hline & & \Theta_L, \Theta_R \vdash \hat{\alpha} \mbox{ type}^+ & \mbox{ By Twfguess} \end{array}$

• Case
$$\frac{\Theta_{L}, \alpha, \Theta_{R} \vdash N \text{ type}^{-}}{\Theta_{L}, \alpha, \Theta_{R} \vdash \downarrow N \text{ type}^{+}} \text{ Twfshift} \downarrow$$

• Case
$$\frac{\Theta_{L}, \alpha, \Theta_{R}, \beta \vdash N \text{ type}^{-}}{\Theta_{L}, \alpha, \Theta_{R} \vdash \forall \beta. N \text{ type}^{-}} \text{ Twfforall}$$

$$\begin{array}{ccc} \beta \neq \alpha & \beta \text{ is fresh} \\ \Theta_{L}, \alpha, \Theta_{R}, \beta \vdash N \ \text{type}^{-} & \text{Premise} \\ \Theta_{L}, \Theta_{R}, \beta \vdash N \ \text{type}^{-} & \text{By i.h.} \end{array}$$

$$\begin{array}{c} \blacksquare & \Theta_{L}, \Theta_{R} \vdash \forall \beta.N \ \text{type}^{-} & \text{By Twfforall} \end{array}$$

• Case
$$\frac{\Theta_{L}, \alpha, \Theta_{R} \vdash P \text{ type}^{+} \qquad \Theta_{L}, \alpha, \Theta_{R} \vdash N \text{ type}^{-}}{\Theta_{L}, \alpha, \Theta_{R} \vdash P \rightarrow N \text{ type}^{-}} \text{ Twfarrow}$$

• Case
$$\frac{\Theta_{L}, \alpha, \Theta_{R} \vdash P \text{ type}^{+}}{\Theta_{L}, \alpha, \Theta_{R} \vdash \uparrow P \text{ type}^{-}} \text{ Twfshift} \uparrow$$

Lemma K.3 (Substitution preserves well-formedness of types). If $\Theta_L, \alpha, \Theta_R \vdash \mathsf{T}$ type[±], then $\Theta_L, \hat{\alpha}, \Theta_R \vdash [\hat{\alpha}/\alpha]\mathsf{T}$ type[±].

Proof. By rule induction over the definition of well-formed types.

• Case
$$\frac{\beta \in FUV(\Theta_L, \beta, \Theta_R)}{\Theta_L, \alpha, \Theta_R \vdash \alpha \text{ type}^+} \text{ Twfuvar}$$

Take cases on whether $\beta = \alpha$

- Case
$$\beta = \alpha$$
:

 $\begin{array}{lll} \Theta_{L}, \alpha, \Theta_{R} \vdash \alpha \ type^{+} & \mbox{Assumption} \\ & & [\hat{\alpha}/\alpha]\alpha = \hat{\alpha} & \mbox{By definition} \\ & \Theta_{L}, \hat{\alpha}, \Theta_{R} \vdash \hat{\alpha} \ type^{+} & \mbox{By Twfguess} \\ & & & \Theta_{L}, \hat{\alpha}, \Theta_{R} \vdash [\hat{\alpha}/\alpha]\beta \ type^{+} & \mbox{By equality} \end{array}$

- Case $\beta \neq \alpha$:

$$\begin{split} \Theta_L, \alpha, \Theta_R \vdash \beta \ type^+ & \text{Assumption} \\ [\hat{\alpha}/\alpha]\beta = \beta & \text{By definition} \end{split}$$

Therefore, $\beta \in FUV(\Theta_L)$ or $\beta \in FUV(\Theta_R)$

 $\begin{array}{c} \beta \in FUV(\Theta_L, \hat{\alpha}, \Theta_R) \\ \Theta_L, \hat{\alpha}, \Theta_R \vdash \beta \ type^+ \\ \blacksquare \quad \Theta_L, \hat{\alpha}, \Theta_R \vdash [\hat{\alpha}/\alpha]\beta \ type^+ \\ \end{array} \begin{array}{c} \text{By Twfuvar} \\ \text{By equality} \end{array}$

• Case $\frac{\hat{\alpha} \in \text{FEV}(\Theta_L, \alpha, \Theta_R)}{\Theta_L, \alpha, \Theta_R \vdash \hat{\alpha} \, \text{type}^+} \; \mathsf{Twfguess}$

 $\begin{array}{ll} \Theta_{L}, \alpha, \Theta_{R} \vdash \hat{\beta} \ type^{+} & Assumption \\ [\hat{\alpha}/\alpha]\hat{\beta} = \hat{\beta} & By \ definition \end{array}$

Therefore, $\hat{\beta} \in \text{FEV}(\Theta_L)$ or $\hat{\beta} \in \text{FEV}(\Theta_R)$

$$\begin{array}{cc} \widehat{\beta} \in FEV(\Theta_L, \widehat{\alpha}, \Theta_R) \\ \Theta_L, \widehat{\alpha}, \Theta_R \vdash \widehat{\beta} \ type^+ \\ \blacksquare & \Theta_L, \widehat{\alpha}, \Theta_R \vdash [\widehat{\alpha}/\alpha] \widehat{\beta} \ type^+ \\ \end{array} \begin{array}{cc} \text{By Twfguess} \\ \text{By equality} \end{array}$$

• Case $\begin{array}{l} \Theta_{L}, \alpha, \Theta_{R} \vdash N \text{ type}^{-} \\ \Theta_{L}, \alpha, \Theta_{R} \vdash \downarrow N \text{ type}^{+} \\ \end{array} \text{ Twfshift} \downarrow \\ \\ \Theta_{L}, \alpha, \Theta_{R} \vdash N \text{ type}^{-} \\ \Theta_{L}, \alpha, \Theta_{R} \vdash [\hat{\alpha}/\alpha]N \text{ type}^{-} \\ \Theta_{L}, \hat{\alpha}, \Theta_{R} \vdash [\hat{\alpha}/\alpha]N \text{ type}^{+} \\ \end{array} \text{ By Twfshift} \downarrow \\ \\ \blacksquare \\ \Theta_{L}, \hat{\alpha}, \Theta_{R} \vdash [\hat{\alpha}/\alpha] \downarrow N \text{ type}^{+} \\ \blacksquare \text{ by definition of substitution} \end{array}$

• Case
$$\frac{\Theta_L, \alpha, \Theta_R, \beta \vdash N \text{ type}^-}{\Theta_L, \alpha, \Theta_R \vdash \forall \beta. N \text{ type}^-} \text{ Twfforall}$$

 β fresh, and therefore $\beta \neq \alpha$.

$$\begin{array}{lll} & \Theta_L, \alpha, \Theta_R \vdash \forall \beta. N \ type^- & Assumption \\ & \Theta_L, \alpha, (\Theta_R, \beta) \vdash N \ type^- & Premise \\ & \Theta_L, \hat{\alpha}, (\Theta_R, \beta) \vdash [\hat{\alpha}/\alpha] N \ type^- & By \ i.h. \\ & \Theta_L, \hat{\alpha}, \Theta_R \vdash \forall \beta. [\hat{\alpha}/\alpha] N \ type^- & By \ Twfforall \\ & & & \Theta_L, \hat{\alpha}, \Theta_R \vdash [\hat{\alpha}/\alpha] (\forall \beta. N) \ type^- & By \ definition \ of \ substitution \end{array}$$

• Case

$$\begin{array}{c} \underbrace{\Theta_{L}, \alpha, \Theta_{R} \vdash P \, type^{+} \qquad \Theta_{L}, \alpha, \Theta_{R} \vdash N \, type^{-}}_{\Theta_{L}, \alpha, \Theta_{R} \vdash P \rightarrow N \, type^{-}} \quad Twfarrow \\ \\ \underbrace{\Theta_{L}, \alpha, \Theta_{R} \vdash P \rightarrow N \, type^{-} \quad Assumption}_{\Theta_{L}, \alpha, \Theta_{R} \vdash [\hat{\alpha}/\alpha]P \, type^{+} \quad By i.h. \\ \\ \underbrace{\Theta_{L}, \alpha, \Theta_{R} \vdash [\hat{\alpha}/\alpha]P \, type^{-} \quad By i.h. \\ \\ \underbrace{\Theta_{L}, \alpha, \Theta_{R} \vdash [\hat{\alpha}/\alpha]N \, type^{-} \quad By i.h. \\ \\ \underbrace{\Theta_{L}, \hat{\alpha}, \Theta_{R} \vdash [\hat{\alpha}/\alpha]N \, type^{-} \quad By Twfarrow \\ \\ \underbrace{\Theta_{L}, \hat{\alpha}, \Theta_{R} \vdash [\hat{\alpha}/\alpha](P \rightarrow N) \, type^{-} \quad By definition of substitution \\ \end{array}$$

• **Case** $\frac{\Theta_L, \alpha, \Theta_R \vdash P \text{ type}^+}{\Theta_L, \alpha, \Theta_R \vdash \uparrow P \text{ type}^-} \text{ Twfshift} \uparrow$

$$\begin{array}{lll} & \Theta_{L}, \alpha, \Theta_{R} \vdash \uparrow P \ type^{-} & Assumption \\ & \Theta_{L}, \alpha, \Theta_{R} \vdash P \ type^{+} & Premise \\ & \Theta_{L}, \hat{\alpha}, \Theta_{R} \vdash [\hat{\alpha}/\alpha]P \ type^{+} & By \ i.h. \\ & \Theta_{L}, \hat{\alpha}, \Theta_{R} \vdash \uparrow [\hat{\alpha}/\alpha]P \ type^{-} & By \ Twfshift\uparrow \\ \\ \hline \quad \bullet & \bullet_{L}, \hat{\alpha}, \Theta_{R} \vdash [\hat{\alpha}/\alpha]\uparrow P \ type^{-} & By \ definition \ of \ substitution \end{array}$$

Lemma K.4 (Context extension maintains variables). *If* $\Theta \longrightarrow \Omega$, *then* $FUV(\Theta) = FUV(\Omega)$ *and* $FEV(\Theta) = FEV(\Omega)$.

Proof. All rules ensure that the left-hand side and right-hand side contexts have the same set of free universal variables and the same set of existential variables. \Box

Lemma K.5 (Algorithmic typing is w.f.). *Given a typing context* Θ *and typing environment* Γ *such that* Θ ctx *and* $\Theta \vdash \Gamma$ env:

- If Θ ; $\Gamma \vdash \nu$: $P \dashv \Theta'$, then Θ' ctx, $\Theta \longrightarrow \Theta'$, $\Theta' \vdash P$ type⁺, and P ground.
- If Θ ; $\Gamma \vdash t : N \dashv \Theta'$, then $\Theta' \operatorname{ctx}$, $\Theta \longrightarrow \Theta'$, $\Theta' \vdash N$ type⁻, and N ground.
- If Θ ; $\Gamma \vdash s : N \gg M \dashv \Theta'$, $\Theta \vdash N$ type⁻, and $[\Theta]N = N$, then Θ' ctx, $\Theta \implies \Theta'$, $\Theta' \vdash M$ type⁻, $[\Theta']M = M$, and $FEV(M) \subseteq FEV(N) \cup (FEV(\Theta') \setminus FEV(\Theta))$.

Proof. By mutual rule induction over the algorithmic synthesis and spine judgments.

• Case
$$x: P \in \Gamma$$

 $\overline{\Theta; \Gamma \vdash x: P \dashv \Theta}$ Avar

 $\begin{array}{cccc} & \Theta & ctx & Assumption \\ & & \Theta & \longrightarrow \Theta & By \ Lemma \ D.1 \ (Context \ extension \ is \ reflexive) \\ & & \Theta \vdash \Gamma \ env & Assumption \\ & & & \Theta \vdash P \ type^+ & Inversion \ (Ewfvar) \\ & & & P \ ground & '' \end{array}$

• Case
$$\frac{\Theta; \Gamma, x: P \vdash t: N \dashv \Theta'}{\Theta; \Gamma \vdash \lambda x: P. t: P \to N \dashv \Theta'} \text{ A}_{\text{abs}}$$

	Θ ctx	Assumption
	$\Theta \vdash \Gamma$ env	Assumption
	$\Theta \vdash P \ type^+$	P annotation
	P ground	//
	$\Theta \vdash \Gamma, x : P env$	By Ewfvar
	Θ ; Γ , $x : P \vdash t : N \dashv \Theta'$	Subderivation
	Θ' ctx	Druib
RF R		By i.h.
6	$\Theta \longrightarrow \Theta'$	//
	$\Theta' \vdash N \text{ type}^-$	//
	N ground	//
₹ T	$\Theta' \vdash P \rightarrow N \ type^-$	By Twfarrow
	$P \rightarrow N$ ground	By definition of ground
3		

• Case $\frac{\Theta, \alpha; \Gamma \vdash t : N \dashv \Theta', \alpha}{\Theta; \Gamma \vdash \Lambda \alpha. \, t : \forall \alpha. \, N \dashv \Theta'} \text{ Agen}$

	$\Theta \text{ ctx}$ $\Theta, \alpha \text{ ctx}$ $\Theta \vdash \Gamma \text{ env}$ $\Theta, \alpha \vdash \Gamma \text{ env}$ $\Theta, \alpha; \Gamma \vdash t : N \dashv \Theta', \alpha$	Assumption By Cwfuvar Assumption By weakening Subderivation
	$ \begin{array}{l} \Theta', \alpha \ \text{ctx} \\ \Theta, \alpha \longrightarrow \Theta', \alpha \\ \Theta, \alpha \vdash N \ \text{type}^- \\ [\Theta']N \ \text{ground} \end{array} $	By i.h. " "
ß	Θ' ctx	Inversion (Cwfuvar)
ß	$\Theta \longrightarrow \Theta'$	Inversion (Cuvar)
ß	$\Theta \vdash \forall \alpha$. N type ⁻	By Twfforall
RF R	$[\Theta'](\forall \alpha. N)$ ground	By definition of ground

• Case
$$\frac{\Theta; \Gamma \vdash t : N \dashv \Theta'}{\Theta; \Gamma \vdash \{t\} : \bigcup N \dashv \Theta'} \text{ Athunk}$$

Assumption
Assumption
By Ewfvar
Subderivation

 $\begin{array}{cccc} & \Theta' & ctx & By i.h. \\ & \Theta & \longrightarrow \Theta' & '' \\ & \Theta' \vdash N & type^{-} & '' \\ & & [\Theta']N & ground & '' \end{array}$

• Case
$$\frac{\Theta; \Gamma \vdash \nu : P \dashv \Theta'}{\Theta; \Gamma \vdash \text{return } \nu : \uparrow P \dashv \Theta'} \text{ Areturn}$$

Symmetrical to Athunk.

$$\begin{array}{c} \bullet \mbox{ Case } \\ \underline{\Theta; \Gamma \vdash \nu: \downarrow M \dashv \Theta' \quad \Theta'; \Gamma \vdash s: M \gg \uparrow Q \dashv \Theta'' \quad \Theta'' \vdash P \leq^+ Q \dashv \Theta'''}_{\Theta'' \vdash [\Theta''']Q \leq^+ P \dashv \Theta^{(4)} \quad \Theta^{(5)} = \Theta^{(4)} \restriction \Theta \quad \Theta^{(5)}; \Gamma, x: P \vdash t: N \dashv \Theta^{(6)} \\ \hline \Theta; \Gamma \vdash \text{let } x: P = \nu(s); t: N \dashv \Theta^{(6)} \end{array} A \text{ambiguouslet} \end{array}$$

Apply the induction hypothesis to the first premise:

$$\begin{array}{ccc} \Theta \ ctx & Assumption \\ \Theta \vdash \Gamma \ env & Assumption \\ \Theta ; \Gamma \vdash \nu : \downarrow \mathcal{M} \dashv \Theta' & Subderivation \\ \Theta' \ ctx & By \ i.h. \\ (1) & \Theta \longrightarrow \Theta' & " \\ \Theta' \vdash \downarrow \mathcal{M} \ type^+ & " \\ \downarrow \mathcal{M} \ ground & " \end{array}$$

Apply the induction hypothesis again, this time to the second premise:

	Θ ctx	Assumption
	$\Theta \Longrightarrow \Theta'$	By Lemma C.1 (\implies subsumes \longrightarrow)
	$\Theta' \vdash \Gamma env$	By Lemma C.6 (Weak context extension preserves w.f. envs)
	$\Theta'; \Gamma dash s \colon \mathcal{M} \gg {\uparrow} Q \dashv \Theta''$	Subderivation
	$\Theta' \vdash M$ type ⁻	Inversion (Twfshift↓)
	M ground	By definition of ground and above
	$[\Theta']M = M$	By Lemma D.5 (Applying a context to a ground type)
(2)	$\Theta' \Longrightarrow \Theta''$	By i.h.
	Θ'' ctx	11
	$\Theta'' \vdash \uparrow Q \ type^-$	11
	$[\Theta'']\uparrow Q=\uparrow Q$	11

Now apply the well-formedness of algorithmic subtyping to the third premise:

	$\Theta'' \vdash P \leq^+ Q \dashv \Theta'''$	Subderivation
	Θ'' ctx	Above
	P ground	P annotation
	$[\Theta'']Q = Q$	By definition of $[-]$ and above
	$\Theta^{\prime\prime\prime}$ ctx	By Lemma E.2 (Algorithmic subtyping is w.f.)
(3)	$\Theta'' \longrightarrow \Theta'''$	//
	$[\Theta''']Q$ ground	"

Apply it again to the fourth premise:

	$\Theta''' \vdash [\Theta''']Q \leq^+ P \dashv \Theta^{(4)}$	Subderivation
	$\Theta^{\prime\prime\prime}$ ctx	Above
	$[\Theta''']Q$ ground	Above
	$[\Theta^{\prime\prime\prime}]P = P$	By Lemma D.5 (Applying a context to a ground type)
	$\Theta^{(4)}$ ctx	By Lemma E.2 (Algorithmic subtyping is w.f.)
(4)	$\Theta^{\prime\prime\prime} \longrightarrow \Theta^{(4)}$	"

Make use of Lemma K.1 (Well-formedness of restricted contexts) in the context of the fifth premise:

$\Theta \Longrightarrow \Theta'$	Applying
	Lemma C.1 (\Longrightarrow subsumes \longrightarrow)
	to (1)
$\Theta' \Longrightarrow \Theta''$	Above ((2))
$\Theta'' \Longrightarrow \Theta'''$	Applying

$$\begin{array}{cccc} & & \text{Lemma C.1 (\Longrightarrow \text{ subsumes } \longrightarrow)} \\ & & \text{to (3)} \\ & & \text{Applying} \\ & & \text{Lemma C.1 (\Longrightarrow \text{ subsumes } \longrightarrow)} \\ & & \text{to (4)} \\ & & \Theta & \text{ctx} & \text{Above} \\ & & \Theta^{(4)} & \text{ctx} & \text{Above} \\ & & \Theta & \Rightarrow \Theta^{(4)} & \text{By Lemma C.4 (Weak context extension is transitive)} \\ & & \Theta^{(5)} = \Theta^{(4)} \upharpoonright \Theta & \text{By premise} \\ & & \Theta & \to \Theta^{(5)} & \text{By Lemma K.1 (Well-formedness of restricted contexts)} \\ & & \Theta^{(5)} & \text{ctx} & '' \end{array}$$

Finally, apply the induction hypothesis to the last premise:

	$\Theta^{(5)}$ ctx	Above
	$\Theta \Longrightarrow \Theta^{(5)}$	By Lemma C.1 (\Longrightarrow subsumes \longrightarrow)
	$\Theta^{(5)} \vdash \Gamma \operatorname{env}$	By Lemma C.6 (Weak context extension preserves w.f. envs)
	$\Theta \vdash P \ type^+$	P is an annotation
	$\Theta^{(5)} \vdash P \ type^+$	By Lemma D.4 (Context extension preserves w.f.)
	P ground	P is an annotation
	$\Theta^{(5)} \vdash \Gamma, \mathbf{x} : P \operatorname{env}$	By Ewfvar
	$\Theta^{(5)}$; Γ, \mathbf{x} : P \vdash t : N \dashv $\Theta^{(6)}$	Subderivation
B	$\Theta^{(6)}$ ctx	By i.h.
(6)	$\Theta^{(5)} \longrightarrow \Theta^{(6)}$	11
IF I	$\Theta^{(6)} \vdash N \text{ type}^-$	11
RF F	N ground	11
G.	$\Theta \longrightarrow \Theta^{(6)}$	Applying Lemma D.3 (Context extension is transitive) to (5) and (6)

• Case

$$\begin{array}{c} \Theta; \Gamma \vdash \nu: {\downarrow} M \dashv \Theta' \\ \\ \hline \Theta'; \Gamma \vdash s: M \gg {\uparrow} Q \dashv \Theta'' \qquad FEV(Q) = \emptyset \quad \Theta''' \models \Theta \quad \Theta'''; \Gamma, x: Q \vdash t: N \dashv \Theta^{(4)} \\ \\ \hline \Theta; \Gamma \vdash \mathsf{let} \; x = \nu(s); t: N \dashv \Theta^{(4)} \end{array} \\ \begin{array}{c} \mathsf{Aunambiguouslet} \end{array}$$

First apply the induction hypothesis to the first subderivation:

	Θctx	Assumption
	$\Theta \vdash \Gamma \operatorname{env}$	Assumption
	$\Theta;\Gamma\vdash\nu:{\downarrow}\mathcal{M}\dashv\Theta'$	Subderivation
	Θ' ctx	By i.h.
(1)	$\Theta \longrightarrow \Theta'$	//
	$\Theta' \vdash \downarrow M \ type^+$	//
	$\downarrow M$ ground	//

Now apply the induction hypothesis to the spine subderivation:

 Θ' ctx Above

$\Theta \Longrightarrow \Theta'$	Applying Lemma C.1 (\Longrightarrow subsumes \longrightarrow) to (1)
$\Theta' \vdash \Gamma env$	By Lemma C.6 (Weak context extension preserves w.f. envs)
$\Theta'; \Gamma \vdash s \colon \mathcal{M} \gg \uparrow Q \dashv \Theta''$	Subderivation
M ground	By the definition of ground
$\Theta' \vdash M$ type ⁻	Inversion (Twfshift↓)
$[\Theta']M = M$	By Lemma D.5 (Applying a context to a ground type)
$ \begin{array}{c} \Theta'' \ ctx \\ \Theta'' \vdash \uparrow Q \ type^- \\ \Theta' \Longrightarrow \Theta'' \end{array} $	By i.h.

Produce a strong context extension judgment using Lemma K.1 (Well-formedness of restricted contexts):

	Θ ctx	Above
	Θ'' ctx	Above
	$\Theta \Longrightarrow \Theta''$	By Lemma C.4 (Weak context extension is transitive)
	$\Theta''' = \Theta'' \restriction \Theta$	Premise
(2)	$\Theta \longrightarrow \Theta'''$	By Lemma K.1 (Well-formedness of restricted contexts)
	$\Theta^{\prime\prime\prime}$ ctx	11

Finally, apply the induction hypothesis to the last premise:

	$\Theta \Longrightarrow \Theta'''$	Applying Lemma C.1 (\Longrightarrow subsumes \longrightarrow) to (2)
	$\Theta''' \vdash \Gamma env$	By Lemma C.6 (Weak context extension preserves w.f. envs)
	$\Theta'' \vdash Q \ type^+$	Inversion (Twfshift↑)
	$\Theta''' \vdash Q \ type^+$	By Lemma D.4 (Context extension preserves w.f.)
	$FEV(Q) = \emptyset$	Premise
	Q ground	By definition of ground
	$\Theta''' \vdash \Gamma, x : Q env$	By Ewfvar
	$\Theta^{\prime\prime\prime}$ ctx	Above
	$\Theta''' \vdash \Gamma, x : Q env$	Above
	$\Theta'''; \Gamma, x : Q \vdash t : N \dashv \Theta^{(4)}$	Subderivation
RF R	$\Theta^{(4)}$ ctx	By i.h.
(3)	$\Theta^{\prime\prime\prime} \longrightarrow \Theta^{(4)}$	11
F	$\Theta^{(4)} \vdash N type^-$	11
F	N ground	11
ß	$\Theta \longrightarrow \Theta^{(4)}$	Applying Lemma D.3 (Context extension is transitive) to (2) and (3)

• Case

 $\overline{\Theta; \Gamma \vdash \varepsilon: N \gg N \dashv \Theta} \text{ Aspinenil}$

RF 1	Θ ctx	Assumption
R.	$\Theta \Longrightarrow \Theta$	By Lemma C.2 (Weak context extension is reflexive)
R.	$\Theta \vdash N$ type ⁻	Assumption
ß	$[\Theta]N = N$	Assumption
	$FEV(N) \subseteq FEV(N)$	By reflexivity of \subseteq

$\frac{\Theta; \Gamma \vdash \nu : P \dashv \Theta' \qquad \Theta' \vdash P \leq^+ [\Theta'] Q \dashv \Theta''}{\Theta; \Gamma \vdash \nu, s : Q \to N \gg}$	$M \dashv \Theta'''$ Aspinecons
Θ ctx	Assumption
$\Theta \vdash \Gamma \operatorname{env}$	Assumption
$\Theta; \Gamma \vdash v \colon P \dashv \Theta'$	Subderivation
Θ' ctx	By i.h.
$\Theta \longrightarrow \Theta'$	//
$\Theta' \vdash P \ type^+$	11
P ground	11
$\Theta' \vdash P \leq^+ Q \dashv \Theta''$	Subderivation
Θ' ctx	Above
P ground	Above
$[\Theta'][\Theta']Q = [\Theta']Q$	By Lemma D.6 (Context application is idempotent)
$\Theta^{\prime\prime}$ ctx	By Lemma E.2 (Algorithmic subtyping is w.f.)
$\Theta' \longrightarrow \Theta''$	11
$[\Theta''][\Theta']Q$ ground	"
Θ'' ctx	Above
$\Theta \longrightarrow \Theta''$	By Lemma B.7 (Declarative subtyping is transitive)
$\Theta \Longrightarrow \Theta''$	By Lemma C.1 (\Longrightarrow subsumes \longrightarrow)
$\Theta'' \vdash \Gamma$ env	By Lemma C.6 (Weak context extension preserves w.f. env
$\Theta''; \Gamma \vdash s : [\Theta''] \mathbb{N} \gg \uparrow \mathbb{Q} \dashv \Theta'''$	Subderivation
$\Theta \vdash N$ type ⁻	Inversion (Twfarrow)
$\Theta'' \vdash N type^-$	By Lemma D.4 (Context extension preserves w.f.)
$\Theta'' \vdash [\Theta''] N \text{ type}^-$	By Lemma E.1 (Applying context to the type preserves w.f
$[\Theta''][\Theta'']N = [\Theta'']N$	By Lemma D.6 (Context application is idempotent)
$\Theta^{\prime\prime\prime}$ ctx	By i.h.
$\Theta'' \Longrightarrow \Theta'''$	"
$\Theta''' \vdash M$ type ⁻	//
$[\Theta''']M = M$	//
$FEV(M) \subseteq FEV(N) \cup (FEV(\Theta'') \setminus FEV(\Theta''))$	"
$\Theta \Longrightarrow \Theta'''$	By Lemma C.4 (Weak context extension is transitive)
$\text{FEV}(N)\subseteq \text{FEV}(Q\toN)$	By definition of FEV
$FEV(\Theta) = FEV(\Theta'')$	By Lemma K.4 (Context extension maintains variables)
$FEV(M) \subseteq FEV(Q \to N) \cup (FEV(\Theta'') \setminus FEV(\Theta))$	Substituting above

• Case
$$\frac{\Theta; \Gamma \vdash s: N \gg M \dashv \Theta' \qquad \alpha \notin FUV(N)}{\Theta; \Gamma \vdash s: (\forall \alpha. N) \gg M \dashv \Theta'} \text{ Aspinetypeabsnotin}$$

 Θ ctx Assumption $\Theta \vdash \Gamma$ env Assumption $\Theta; \Gamma \vdash s : N \gg M \dashv \Theta'$ Subderivation $\Theta \vdash \forall \alpha$. N type⁻ Assumption $\Theta, \alpha \vdash N \text{ type}^-$ Inversion (Twfforall) $\Theta \vdash N \text{ type}^-$ By Lemma K.2 (Type well-formed with type variable removed) $[\Theta](\forall \alpha. N) = \forall \alpha. N$ Assumption $\forall \alpha. [\Theta] N = \forall \alpha. N$ By definition of [-]- $[\Theta]N = N$ By equality Θ' ctx ß By i.h. $\Theta \Longrightarrow \Theta'$ // ß // $\Theta' \vdash M$ type⁻ ß // $[\Theta']M=M$ ß // $FEV(\mathcal{M}) \subseteq FEV(\mathcal{N}) \cup (FEV(\Theta') \setminus FEV(\Theta))$ By definition of FEV $FEV(\forall \alpha. N) = FEV(N)$ $FEV(\mathcal{M}) \subseteq FEV(\forall \alpha. \mathsf{N}) \cup (FEV(\Theta') \setminus FEV(\Theta))$ Substituting above 6

• Case $\frac{\Theta, \hat{\alpha}; \Gamma \vdash s : [\hat{\alpha}/\alpha] N \gg M \dashv \Theta', \hat{\alpha} [= P] \qquad \alpha \in FUV(N)}{\Theta; \Gamma \vdash s : (\forall \alpha. N) \gg M \dashv \Theta', \hat{\alpha} [= P]} \text{ Aspinetypeabsin}$

Θctx	Assumption
$\Theta, \hat{\alpha}$ ctx	By Cwfunsolvedguess
$\Theta \vdash \Gamma \operatorname{env}$	Assumption
$\Theta \Longrightarrow \Theta, \hat{lpha}$	By Lemma C.2 (Weak context extension is reflexive) and Wcnewunsolvedguess
$\Theta, \hat{\alpha} \vdash \Gamma$ env	By Lemma C.6 (Weak context extension preserves w.f. envs)
$\Theta, \hat{\alpha}; \Gamma \vdash s \colon [\hat{\alpha} / \alpha] N \gg M \dashv \Theta', \hat{\alpha} [= P]$	Subderivation
$\Theta \vdash \forall \alpha. N \text{ type}^-$	Assumption
$\alpha\notin FUV(\Theta)$	α fresh
$\Theta, \alpha \vdash N \ type^-$	By Twfforall
$\Theta, \hat{\alpha} \vdash [\hat{\alpha}/\alpha] N \ type^-$	By Lemma K.3 (Substitution preserves well-formedness of types)
$[\Theta](\forall \alpha. N) = \forall \alpha. N$	Assumption
$[\Theta]N = N$	By definition of [–]–
$[\Theta]([\hat{\alpha}/\alpha]N) = [\hat{\alpha}/\alpha]N$	â fresh
$[\Theta, \hat{\alpha}]([\hat{\alpha}/\alpha]N) = [\hat{\alpha}/\alpha]N$	By definition of [—]—

ß	$\Theta', \hat{\alpha} [= P] ctx$	By i.h.
	$\Theta, \hat{lpha} \Longrightarrow \Theta', \hat{lpha} [= P]$	//
5	$\Theta', \hat{\alpha} [= P] \vdash M \text{ type}^-$	//
13P	$[\Theta', \hat{lpha} [= P]] M = M$	//
	$\text{FEV}(M) \subseteq \text{FEV}([\hat{\alpha}/\alpha]N) \cup (\text{FEV}(\Theta', \hat{\alpha} [=P]) \setminus \text{FEV}(\Theta, \hat{\alpha}))$	//

	$\Theta \Longrightarrow \Theta$	By Lemma C.2 (Weak context extension is reflexive)
	$\Theta \Longrightarrow \Theta, \hat{lpha}$	By $\hat{\alpha}$ fresh & Wcnewunsolvedguess
6	$\Theta \Longrightarrow \Theta', \hat{\alpha} [= P]$	By Lemma C.4 (Weak context extension is transitive)

	$\text{FEV}(M) \subseteq \text{FEV}([\hat{\alpha}/\alpha]N) \cup (\text{FEV}(\Theta', \hat{\alpha} [=P]) \setminus \text{FEV}(\Theta))$	By definition of FEV
	$\operatorname{FEV}([\hat{\alpha}/\alpha]N) \subseteq \operatorname{FEV}(\forall \alpha. N) \cup \{\hat{\alpha}\}$	By definition of FEV
	$\{ \widehat{\alpha} \} \subseteq \operatorname{FEV}(\Theta', \widehat{\alpha} [= P]) \setminus \operatorname{FEV}(\Theta)$	By definition of FEV
ß	$\text{FEV}(M) \subseteq \text{FEV}(\forall \alpha. N) \cup (\text{FEV}(\Theta', \hat{\alpha} [= P]) \setminus \text{FEV}(\Theta))$	By above

L' Determinism of typing

Lemma L.1 (Algorithmic typing is deterministic).

- If Θ ; $\Gamma \vdash e : A_1 \dashv \Theta'_1$ and Θ ; $\Gamma \vdash e : A_2 \dashv \Theta'_2$, then $A_1 = A_2$ and $\Theta'_1 = \Theta'_2$.
- If Θ ; $\Gamma \vdash t : N \gg M_1 \dashv \Theta'_1$ and Θ ; $\Gamma \vdash t : N \gg M_2 \dashv \Theta'_2$, then $M_1 = M_2$ and $\Theta'_1 = \Theta'_2$.

Proof. The algorithmic system is mostly syntax-oriented, with the only exceptions Aspinetypeabsnotin and Aspinetypeabsin (which have the same conclusion) being distinguished by whether $\alpha \in FUV(N)$, a deterministic check. Therefore, determinacy of the system follows by a straightforward mutual rule induction over the algorithmic synthesis and spine judgments, making use of Lemma H.1 (Algorithmic subtyping is deterministic).

M' Decidability of typing

Lemma M.1 (Decidability of algorithmic typing). There exists a total order \sqsubset on well-formed algorithmic typing judgments such that for each derivation with typing judgment premises A_i and conclusion B, each A_i compares less than B, i.e. $\forall i. A_i \sqsubset B$.

Proof. We use the same ordering of judgments as in Lemma J.1 (Isomorphic environments type the same terms).

• Case $\frac{x:P\in \Gamma}{\Theta;\Gamma\vdash x:P\dashv\Theta} \text{ Avar}$

Testing membership of Γ terminates since typing environments are finite.

• Case $\begin{array}{c} \Theta; \Gamma, x: P \vdash t: N \dashv \Theta' \\ \overline{\Theta; \Gamma \vdash \lambda x: P. t: P \rightarrow N \dashv \Theta'} \quad A\lambda abs \\
|\lambda x: P. t| = |t| + 1 \qquad By \text{ definition of } |_| \\
> |t| \\
\mathbb{T} \qquad (\Theta; \Gamma, x: P \vdash t: N \dashv \Theta') \\ \sqcap \qquad By \text{ definition of } \Box \\
(\Theta; \Gamma \vdash \lambda x: P. t: P \rightarrow N \dashv \Theta') \qquad 100
\end{array}$

• Case
$$\frac{\Theta, \alpha; \Gamma \vdash t : N \dashv \Theta', \alpha}{\Theta; \Gamma \vdash \Lambda \alpha. t : \forall \alpha. N \dashv \Theta'} \text{ Agen}$$

$$\begin{split} |\Lambda \alpha. t| &= |t| + 1 & \text{By definition of } |_| \\ &> |t| \\ \blacksquare & (\Theta, \alpha; \Gamma \vdash t : N \dashv \Theta', \alpha) \\ & \sqcap & \text{By definition of } \sqsubset \\ & (\Theta; \Gamma \vdash \Lambda \alpha. t : \forall \alpha. N \dashv \Theta') \end{split}$$

• Case
$$\frac{\Theta; \Gamma \vdash t : N \dashv \Theta'}{\Theta; \Gamma \vdash \{t\} : \downarrow N \dashv \Theta'} \text{ Athunk}$$

$$\begin{split} |\{t\}| &= |t| + 1 & \text{By definition of } |_| \\ &> |t| & \\ \texttt{ISF} & (\Theta; \Gamma \vdash t : N \dashv \Theta') & \\ & & & & \\ & & &$$

• Case
$$\frac{\Theta; \Gamma \vdash \nu : P \dashv \Theta'}{\Theta; \Gamma \vdash \text{return } \nu : \uparrow P \dashv \Theta'} \text{ Areturn}$$

$$\begin{split} |\mathsf{return} \ \nu| &= |\nu| + 1 & \text{By definition of } |_| \\ &> |\nu| \\ \blacksquare & (\Theta; \Gamma \vdash \nu : P \dashv \Theta') \\ & \sqcap & \text{By definition of } \Box \\ & (\Theta; \Gamma \vdash \mathsf{return} \ \nu : \uparrow P \dashv \Theta') \end{split}$$

• Case
$$\begin{array}{c} \Theta; \Gamma \vdash \nu: \downarrow M \dashv \Theta' \quad \Theta'; \Gamma \vdash s: M \gg \uparrow Q \dashv \Theta'' \quad \Theta'' \vdash P \leq^+ Q \dashv \Theta''' \\ \Theta''' \vdash [\Theta'''] Q \leq^+ P \dashv \Theta^{(4)} \quad \Theta^{(5)} = \Theta^{(4)} \restriction \Theta \quad \Theta^{(5)}; \Gamma, x: P \vdash t: N \dashv \Theta^{(6)} \\ \hline \Theta; \Gamma \vdash \text{let } x: P = \nu(s); t: N \dashv \Theta^{(6)} \end{array}$$
 Aambiguouslet

The algorithmic subtyping judgments terminate per Lemma I.2 (Decidability of algorithmic subtyping).

$$\begin{aligned} ||\text{let } x : P = v(s); t| &= |v| + |s| + |t| + 1 & \text{By definition of } |_| \\ &|v| < ||\text{let } x : P = v(s); t| & \\ &(\Theta; \Gamma \vdash v : \downarrow M \dashv \Theta') & \\ &\sqcap & \text{By definition of } \Box & \\ &(\Theta; \Gamma \vdash \text{let } x : P = v(s); t : N \dashv \Theta^{(6)}) & \\ &|s| < ||\text{let } x : P = v(s); t| & \\ &|\mathfrak{S}| < ||\text{let } x : P = v(s); t| & \\ &\square & \text{By definition of } \Box & \\ &\square & \text{By definition of } \Box & \\ \end{aligned}$$

13

• Case $\begin{array}{c} \Theta; \Gamma \vdash \nu: {\downarrow} M \dashv \Theta' \\ \\ \underline{\Theta'; \Gamma \vdash s: M \gg \uparrow Q \dashv \Theta''} \quad FEV(Q) = \emptyset \quad \Theta''' = \Theta'' \restriction \Theta \quad \Theta'''; \Gamma, x: Q \vdash t: N \dashv \Theta^{(4)} \\ \\ \Theta; \Gamma \vdash \mathsf{let} \ x = \nu(s); t: N \dashv \Theta^{(4)} \end{array}$ Aunambiguouslet

Determining the set of free universal variables of a finite type is terminating.

$$\begin{split} \|\text{let } x = \nu(s); t\| = |\nu| + |s| + |t| + 1 & \text{By definition of } |_| \\ & |\nu| < |\text{let } x = \nu(s); t| & \text{By definition of } |_| \\ & (\Theta; \Gamma \vdash \nu : \downarrow M \dashv \Theta') & \\ & \sqcap & \text{By definition of } \Box \\ & (\Theta; \Gamma \vdash \text{let } x = \nu(s); t : N \dashv \Theta^{(4)}) & \\ \|s\| < |\text{let } x = \nu(s); t| & \\ & (\Theta'; \Gamma \vdash s : M \gg \uparrow Q \dashv \Theta'') & \\ & \sqcap & \\ & (\Theta; \Gamma \vdash \text{let } x = \nu(s); t : N \dashv \Theta^{(4)}) & \\ & \|t\| < |\text{let } x = \nu(s); t| & \\ & \mathbb{S}^{\ast} & (\Theta'''; \Gamma, x : P \vdash t : N \dashv \Theta^{(4)}) & \\ & \Pi & \\ & (\Theta; \Gamma \vdash \text{let } x = \nu(s); t : N \dashv \Theta^{(4)}) & \\ & \Pi & \\ & (\Theta; \Gamma \vdash \text{let } x = \nu(s); t : N \dashv \Theta^{(4)}) & \\ & \Pi & \\ & (\Theta; \Gamma \vdash \text{let } x = \nu(s); t : N \dashv \Theta^{(4)}) & \\ & \\ & \Pi & \\ & (\Theta; \Gamma \vdash \text{let } x = \nu(s); t : N \dashv \Theta^{(4)}) & \\ & \\ & \end{bmatrix} \end{split}$$

• Case

 $\overline{\Theta; \Gamma \vdash \varepsilon: N \gg N \dashv \Theta} \text{ Aspinenil}$

Rule terminal.

• Case $\frac{\Theta; \Gamma \vdash \nu: P \dashv \Theta' \qquad \Theta' \vdash P \leq^+ [\Theta']Q \dashv \Theta'' \qquad \Theta''; \Gamma \vdash s: [\Theta'']N \gg M \dashv \Theta'''}{\Theta; \Gamma \vdash \nu, s: Q \to N \gg M \dashv \Theta'''} \text{ Aspinecons}$

The algorithmic subtyping judgment terminates per Lemma I.2 (Decidability of algorithmic subtyping).

$$\Theta; \Gamma \vdash \nu, s : Q \to N \gg M \dashv \Theta'''$$

• Case

$$\begin{array}{c} \Theta; \Gamma \vdash s : N \gg M \dashv \Theta' & \alpha \notin FUV(N) \\ \hline \Theta; \Gamma \vdash s : (\forall \alpha. N) \gg M \dashv \Theta' \\ \\ |s| = |s| \\ NPQ(\forall \alpha. N) > NPQ(N) \\ \hline \Theta; \Gamma \vdash s : N \gg M \dashv \Theta') \\ \hline \Box & By \text{ definition of } \Box \\ (\Theta; \Gamma \vdash s : (\forall \alpha. N) \gg M \dashv \Theta') \\ \end{array}$$

We define types to be finite, therefore calculating FUV(N) is terminating.

• Case $\frac{\Theta, \hat{\alpha}; \Gamma \vdash s : [\hat{\alpha}/\alpha] N \gg M \dashv \Theta', \hat{\alpha} [= P] \qquad \alpha \in FUV(N)}{\Theta; \Gamma \vdash s : (\forall \alpha. N) \gg M \dashv \Theta', \hat{\alpha} [= P]} \text{ Aspinetypeabsin}$

$$\begin{split} |s| &= |s| \\ NPQ(\forall \alpha. \, N) > NPQ([\hat{\alpha} / \alpha] N) \end{split}$$

Since α and $\hat{\alpha}$ are positive, the substitution cannot introduce any prenex quantifiers.

$$\label{eq:matrix} \begin{split} \mathbf{I} & \mathbf{I} (\Theta, \hat{\alpha}; \Gamma \vdash s : [\hat{\alpha} / \alpha] \mathbf{N} \gg \mathbf{M} \dashv \Theta', \hat{\alpha} [= \mathbf{P}]) \\ & \boldsymbol{\Pi} \\ & (\Theta; \Gamma \vdash s : (\forall \alpha, \mathbf{N}) \gg \mathbf{M} \dashv \Theta') \end{split}$$

By definition of \Box

We define types to be finite, therefore calculating FUV(N) is terminating.

N' Soundness of typing

N'.1 Lemmas

Lemma N.1 (Extended complete context). *If* Θ' ctx, Ω ctx, $\Theta \longrightarrow \Omega$, $\Theta \Longrightarrow \Theta'$, and $\Theta' \upharpoonright \Theta \longrightarrow \Omega$, then $\exists \Omega' \text{ such that } \Omega' \text{ ctx, } \Theta' \longrightarrow \Omega'$, and $\Omega \Longrightarrow \Omega'$.

Proof. We add the $\hat{\alpha}$ [= P] context items that newly appear in Θ' to the complete context. By rule induction on $\Theta \implies \Theta'$:

• Case

 $\xrightarrow[\cdot \implies \cdot]{} \mathsf{Wcempty}$

The new context is \cdot .

Is · ctx By Cwfempty

- $\blacksquare \quad \cdot \quad \longrightarrow \quad \cdot \quad By \ Cempty$
- $\blacksquare \quad \cdot \implies \cdot \qquad By \ Wcempty$

• Case $\begin{array}{c} \Theta \Longrightarrow \Theta' \\ \overline{\Theta, \alpha \Longrightarrow \Theta', \alpha} \end{array} \text{Weuvar}$

We add the α context item onto the new context from the induction hypothesis.

	Θ', α ctx	Assumption
(1)	Θ' ctx	Inversion (Cwfuvar)
	$\Theta, \alpha \longrightarrow \Omega$	Assumption
	$\Omega = ar{\Omega}, lpha$	Inversion (Cuvar)
(2)	$\Theta \longrightarrow \bar{\Omega}$	11
	$\bar{\Omega}, \alpha$ ctx	Assumption
(3)	$\bar{\Omega}$ ctx	Inversion (Cwfuvar)
(4)	$\Theta \Longrightarrow \Theta'$	Subderivation
	$\Theta', \alpha \!\upharpoonright\!$	Assumption
(5)	$\Theta'\!\upharpoonright\!\Theta\longrightarrow \bar\Omega$	Inversion (uvar)
	$egin{array}{c} ar{\Omega}' & { m ctx} \ \Theta' & \longrightarrow ar{\Omega}' \ ar{\Omega} & \Longrightarrow ar{\Omega}' \end{array}$	By i.h., using (1–5) and for some complete context $\bar{\Omega}'$ "
13 13 13	$ar{\Omega}', lpha \ \operatorname{ctx} \ \Theta', lpha \longrightarrow ar{\Omega}', lpha \ \operatorname{ctx} \ ar{\Omega}, lpha \longrightarrow ar{\Omega}', lpha \ ar{\Omega}, lpha \longrightarrow ar{\Omega}', lpha$	By Cuvar

• Case $\frac{\Theta \Longrightarrow \Theta'}{\Theta, \hat{\alpha} \Longrightarrow \Theta', \hat{\alpha}} \text{ Wcunsolvedguess}$

We add the $\hat{\alpha} = P$ context item to the new context from the induction hypothesis, where P is the solution for $\hat{\alpha}$ in the complete context Ω .

	$\Theta', \hat{\alpha} \operatorname{ctx}$	Assumption
(1)	Θ' ctx	Inversion (Cwfunsolvedguess)
	$\Theta, \hat{lpha} \longrightarrow \Omega$	Assumption
	$\Theta, \hat{lpha} \longrightarrow \Omega$	Assumption
	$\Omega = ar{\Omega}, \widehat{lpha} = P$	Inversion (Csolveguess)
(2)	$\Theta \longrightarrow \bar{\Omega}$	11
	$ar{\Omega}, ar{lpha} = P \ ctx$	Assumption
(3)	$\bar{\Omega}$ ctx	Inversion (Cwfsolvedguess)
	$ar{\Omega} \vdash P \ type^+$	11
	P ground	11
(4)	$\Theta \Longrightarrow \Theta'$	Subderivation
	$\Theta', \hat{\alpha} \upharpoonright \Theta, \hat{\alpha} \longrightarrow \bar{\Omega}, \hat{\alpha} = P$	Assumption
	$(\Theta' \upharpoonright \Theta), \hat{\alpha} \longrightarrow \bar{\Omega}, \hat{\alpha} = P$	Inversion (guessin)
(5)	$\Theta'\!\upharpoonright\!\Theta\longrightarrow \bar\Omega$	Inversion (Csolveguess)
	$\bar{\Omega}'$ ctx	By i.h., using (1–5) and for some complete context $\bar{\Omega}'$
	$\Theta' \longrightarrow \bar{\Omega}'$	И

$$\bar{\Omega} \Longrightarrow \bar{\Omega}'$$
 "

	$\bar{\Omega}' \vdash P$ type ⁺	By Lemma C.5 (Weak context extension preserves well-formedness)
ß	$\bar{\Omega}', \hat{lpha} = P \ ctx$	By Cwfsolvedguess
ß	$\Theta', \hat{lpha} \longrightarrow \bar{\Omega}', \hat{lpha} = P$	By Csolveguess
	$[\Omega]\bar{\Omega}\vdash P\cong^+P$	By Lemma B.1 (Declarative subtyping is reflexive)
ß	$\bar{\Omega}, \hat{\alpha} = P \implies \bar{\Omega}', \hat{\alpha} = P$	By Wcsolvedguess

• Case $\frac{\Theta \Longrightarrow \Theta'}{\Theta, \hat{\alpha} \Longrightarrow \Theta', \hat{\alpha} = P} \text{ Wcsolveguess}$

As before, we add the $\hat{\alpha} = Q$ context item to the new context from the induction hypothesis, where Q is the solution for $\hat{\alpha}$ in the complete context Ω .

(1)	$egin{array}{lll} \Theta', \widehat{lpha} = { m P} \ { m ctx} \ \Theta' \ { m ctx} \ \Theta, \widehat{lpha} & \longrightarrow \Omega \end{array}$	
(2)	$egin{aligned} \Omega &= ar{\Omega}, \hat{lpha} = Q \ \Theta &\longrightarrow ar{\Omega} \ ar{\Omega}, \hat{lpha} = Q \ ext{ ctx} \end{aligned}$	Inversion (Csolveguess) " Assumption
(3)	$ar{\Omega}$ ctx $ar{\Omega} \vdash Q$ type ⁺	Inversion (Cwfsolvedguess) "
	Q ground	"
(4)	$\Theta \Longrightarrow \Theta'$ $\Theta', \hat{\alpha} = P \upharpoonright \Theta, \hat{\alpha} \longrightarrow \bar{\Omega}, \hat{\alpha} = Q$	Subderivation
	$\Theta, \alpha \equiv P \mid \Theta, \alpha \longrightarrow \Omega, \alpha \equiv Q$ $(\Theta' \upharpoonright \Theta), \hat{\alpha} = P \longrightarrow \bar{\Omega}, \hat{\alpha} = Q$	Assumption Inversion ()guessin)
(5)	$\Theta' \upharpoonright \Theta \longrightarrow \bar{\Omega}$	Inversion (Csolvedguess)
	$[\Omega]\Theta'{\upharpoonright}\Theta\vdash {P}\cong^+{Q}$	"
	$\bar{\Omega}'$ ctx	By i.h., using (1–5) and for some complete context $\bar{\Omega}'$
	$egin{array}{ccc} \Theta' & \longrightarrow ar \Omega' \ ar \Omega & \Longrightarrow ar \Omega' \end{array}$	// //
	,	
13	$ar{\Omega}' \vdash \mathrm{Q} \ \mathrm{type}^+ \ ar{\Omega}', \widehat{lpha} = \mathrm{Q} \ \mathrm{ctx}$	By Lemma C.5 (Weak context extension preserves well-formedness) By Cwfsolvedguess
	$\ \Theta'\ \vdash P \cong^+ Q$	Since $[\Omega](\Theta' \upharpoonright \Theta) = [\Omega]\Theta'$
6	$\Theta', \hat{\alpha} = P \longrightarrow \bar{\Omega}', \hat{\alpha} = Q$	
ß	$egin{array}{llllllllllllllllllllllllllllllllllll$	By Lemma B.1 (Declarative subtyping is reflexive) By Wcsolvedguess
	-, , , ,	,

• Case
$$\frac{\Theta \Longrightarrow \Theta' \qquad \|\Theta\| \vdash P \cong^+ Q}{\Theta, \hat{\alpha} = P \implies \Theta', \hat{\alpha} = Q} \text{ Wcsolvedguess}$$

We add the $\hat{\alpha} = R$ context item to the new context from the induction hypothesis, where R is the solution for $\hat{\alpha}$ in the complete context Ω .

	$\Theta', \hat{lpha} = Q \ ctx$	Assumption
(1)	Θ' ctx	Inversion (Cwfsolvedguess)
	$\Theta, \hat{lpha} \longrightarrow \Omega$	Assumption
	$\Theta, \hat{lpha} = P \longrightarrow \Omega$	Assumption
	$\Omega = ar{\Omega}, ar{lpha} = R$	Inversion (Csolvedguess)
(2)	$\Theta \longrightarrow \bar{\Omega}$	11
	$\ \Theta\ \vdash P\cong^+R$	11
	$\tilde{\Omega}, \hat{\alpha} = R \ ctx$	Assumption
(3)	$\bar{\Omega}$ ctx	Inversion (Cwfsolvedguess)
	$ar{\Omega} \vdash R$ type ⁺	11
	R ground	11
(4)	$\Theta \Longrightarrow \Theta'$	Subderivation
	$\Theta', \hat{\alpha} = Q \upharpoonright \Theta, \hat{\alpha} = P \longrightarrow \bar{\Omega}, \hat{\alpha} = R$	Assumption
	$(\Theta' \upharpoonright \Theta), \hat{\alpha} = Q \longrightarrow \bar{\Omega}, \hat{\alpha} = R$	Inversion (guessin)
(5)	$\Theta' \upharpoonright \Theta \longrightarrow \bar{\Omega}$	Inversion (Csolvedguess)
	$\bar{\Omega}'$ ctx	By i.h., using (1–5) and for some complete context $\bar{\Omega}'$
	$\Theta' \longrightarrow \bar{\Omega}'$	// // // /////////////////////////////
	$\bar{\Omega} \Longrightarrow \bar{\Omega}'$	11
	$\bar{\Omega}' \vdash R$ type ⁺	By Lemma C.5 (Weak context extension preserves well-formedness)
RF.	$\bar{\Omega}', \hat{\alpha} = R$ ctx	By Cwfsolvedguess
	$\ \Theta\ \vdash P\cong^+Q$	Premise
	$\ \Theta\ \vdash Q \cong^+ R$	By Lemma B.7 (Declarative subtyping is transitive)
	$\ \Theta'\ \vdash Q \cong^+ R$	By Lemma C.3 (Equality of declarative contexts (weak))
RF	$\Theta', \hat{\alpha} = Q \longrightarrow \bar{\Omega}', \hat{\alpha} = R$	
	$[\Omega]\overline{\Omega} \vdash P \cong^+ R$	By Lemma D.2 (Equality of declarative contexts)
R2	$\bar{\Omega}, \hat{\alpha} = P \implies \bar{\Omega}', \hat{\alpha} = R$	By Wcsolvedguess

• Case	$\Theta \Longrightarrow \Theta'$	Wcnewunsolvedguess
	$\overline{\Theta \Longrightarrow \Theta', \hat{\alpha}}$	vollewullsolveuguess

We add a solved context item for $\hat{\alpha}$ to the new complete context from the induction hypothesis.

	Θ', α ctx	Assumption
(1)	Θ' ctx	Inversion (Cwfuvar)
(2)	$\Theta \longrightarrow \Omega$	Assumption
(3)	Ωctx	Assumption
(4)	$\Theta \Longrightarrow \Theta'$	Subderivation
	$(\Theta', \widehat{lpha}) \upharpoonright \Theta \longrightarrow \Omega$	Assumption
(5)	$\Theta'\!\upharpoonright\!\Theta\longrightarrow\Omega$	Inversion (guessnotin)
	Ω' ctx	By i.h., using (1–5) and for some complete context Ω'
	$\Theta' \longrightarrow \Omega'$	11
	$\Omega \Longrightarrow \Omega'$	"
ß	$(\Omega', \hat{\alpha} = \downarrow \forall \alpha. \uparrow \alpha) \operatorname{ctx}$	By Cwfsolvedguess
ß	$\Theta', \hat{\alpha} \longrightarrow (\Omega', \hat{\alpha} = \downarrow \forall \alpha. \uparrow \alpha)$	By Csolveguess

• Case $\frac{\Theta \Longrightarrow \Theta'}{\Theta \Longrightarrow \Theta', \hat{\alpha} = P} \text{ Wcnewsolvedguess}$

We add the $\hat{\alpha} = P$ context item onto the new context from the induction hypothesis.

(1)	$egin{array}{lll} \Theta', \hat{lpha} = { extsf{P}} & extsf{ctx} \ \Theta' & extsf{ctx} \ \Theta' dash extsf{y} + { extsf{P}} & extsf{type}^+ \end{array}$	Assumption Inversion (Cwfunsolvedguess) "
	P ground	//
(2)	$\Theta \longrightarrow \Omega$	Assumption
(3)	Ω ctx	Assumption
(4)	$\Theta \Longrightarrow \Theta'$	Subderivation
	$(\Theta', \widehat{\alpha} = P) \upharpoonright \Theta \longrightarrow \Omega$	Assumption
(5)	$\Theta'\!\upharpoonright\!\Theta\longrightarrow\Omega$	Inversion (\guessnotin)
	$egin{array}{c} \Omega' \ \operatorname{ctx} \ \Theta' &\longrightarrow \Omega' \ \Omega &\Longrightarrow \Omega' \end{array}$	By i.h., using (1–5) and for some complete context Ω' "
	$\Omega' \vdash P \ type^+$	By Lemma D.4 (Context extension preserves w.f.)
6	$(\Omega', \hat{\alpha} = P) \operatorname{ctx}$	By Cwfsolvedguess
6	$\Theta', \hat{\alpha} \longrightarrow (\Omega', \hat{\alpha} = P)$	By Csolveguess
1 37	$\Omega \implies (\Omega', \hat{\alpha} = P)$	By Wcnewunsolvedguess

Lemma N.2 (Identical restricted contexts). *If* Θ' ctx *and* $\Theta \longrightarrow \Theta'$ *, then* $\Theta'' \upharpoonright \Theta = \Theta'' \upharpoonright \Theta'$. *Proof.* By rule induction on the $\Theta'' \upharpoonright \Theta$ judgment.

• Case $\frac{1}{\cdot |\cdot|} \stackrel{\text{`empty}}{\longrightarrow} \stackrel{\text{`empty}}{\longrightarrow} \stackrel{\text{`opt}}{\longrightarrow} \stackrel{\$

• Case
$$\frac{\Theta'' \upharpoonright \Theta = \Theta'''}{\Theta'', \alpha \upharpoonright \Theta, \alpha = \Theta''', \alpha} \upharpoonright \mathsf{uvar}$$

 $\label{eq:alpha} \begin{array}{ll} \alpha \in \Theta' & \quad \mbox{By Lemma K.4 (Context extension maintains variables)} \\ \Theta'' \upharpoonright \Theta' = \Theta''' & \quad \mbox{By i.h.} \end{array}$

ß

 $\Theta'', \alpha \upharpoonright \Theta' = \Theta''', \alpha \quad \text{By } \upharpoonright \text{uvar}$ (the α context item must appear last in Θ' by well-formedness of Θ')

• Case

$$\begin{array}{c}
\Theta'' \upharpoonright \Theta = \Theta''' \\
\overline{\Theta'', \hat{\alpha}[=P] \upharpoonright \Theta, \hat{\alpha}[=Q] = \Theta''', \hat{\alpha}[=P]} \quad \text{[guessin} \\
\hat{\alpha}[=R] \in \Theta' \\
\Theta'' \upharpoonright \Theta' = \Theta''' \\
\Theta'', \hat{\alpha}[=P] \upharpoonright \Theta' = \Theta''' \\
\text{By Lemma K.4 (Context extension maintains variables)} \\
\Theta'' \upharpoonright \Theta' = \Theta''' \\
\text{By Lemma K.4 (Context extension maintains variables)} \\
\Theta'' \upharpoonright \Theta' = \Theta''' \\
\text{By Lemma K.4 (Context extension maintains variables)} \\
\Theta'' \upharpoonright \Theta' = \Theta''' \\
\text{By Lemma K.4 (Context extension maintains variables)} \\
\Theta'' \upharpoonright \Theta' = \Theta''' \\
\text{By Lemma K.4 (Context extension maintains variables)} \\
\Theta'' \upharpoonright \Theta' = \Theta''' \\
\text{By Lemma K.4 (Context extension maintains variables)} \\
\Theta'' \upharpoonright \Theta' = \Theta''' \\
\text{By Lemma K.4 (Context extension maintains variables)} \\
\Theta'' \upharpoonright \Theta' = \Theta''' \\
\Theta'' \land \Theta' = \Theta''' \\
\Theta' \circ \Theta' \\
\Theta' \circ \Theta' = \Theta''' \\
\Theta' \circ \Theta' \\
\Theta'$$

$$\begin{split} \hat{\alpha} & [= R] \notin \Theta' & \text{By Lemma K.4 (Context extension maintains variables)} \\ \Theta'' \upharpoonright \Theta' = \Theta''' & \text{By i.h.} \\ \hline & & \Theta'', \hat{\alpha} & [= P] \upharpoonright \Theta' = \Theta''' & \text{By §uessnotin} \end{split}$$

N'.2 Statement

Theorem N.3 (Soundness of algorithmic typing). *If* Θ ctx, $\Theta \vdash \Gamma$ env, $\Theta' \longrightarrow \Omega$, and Ω ctx, then:

- If Θ ; $\Gamma \vdash v : P \dashv \Theta'$, then $\|\Theta\|$; $\Gamma \vdash v : [\Omega]P$.
- If Θ ; $\Gamma \vdash t : N \dashv \Theta'$, then $\|\Theta\|$; $\Gamma \vdash t : [\Omega]N$.
- *If* Θ ; $\Gamma \vdash s : N \gg M \dashv \Theta'$, $\Theta \vdash N$ type⁻, and $[\Theta]N = N$, then $\exists M'$ such that $\|\Theta\| \vdash [\Omega]M \cong^{-} M'$ and $\|\Theta\|$; $\Gamma \vdash s : [\Omega]N \gg M'$.

Proof. By mutual induction with Theorem O.4 (Completeness of algorithmic typing), using the judgment ordering from Lemma J.1 (Isomorphic environments type the same terms).

• Case $\begin{array}{c} x: P \in \Gamma \\ \overline{\Theta; \Gamma \vdash x: P \dashv \Theta} \end{array} Avar \\ x: P \in \Gamma \\ P \text{ ground} \\ x: [\Omega]P \in \Gamma \\ x: [\Omega]P \in \Gamma \\ W \text{ Lemma D.5 (Applying a context to a ground type)} \\ \hline \end{tabular}$ • Case $\frac{\Theta; \Gamma, x: P \vdash t: N \dashv \Theta'}{\Theta; \Gamma \vdash \lambda x: P. t: P \rightarrow N \dashv \Theta'} \text{ A}\lambda abs$

Assumption
Assumption
Assumption
By Lemma K.5 (Algorithmic typing is w.f)
//
Inversion (Twfarrow)
Assumption
By definition of ground
By Ewfvar
By i.h. (term size decreases)
By definition of [–]–
By Lemma D.5 (Applying a context to a ground type)
By Dλabs
By definition of [–]–

```
ß
```

ß

```
• Case \frac{\Theta, \alpha; \Gamma \vdash t : N \dashv \Theta', \alpha}{\Theta; \Gamma \vdash \Lambda \alpha. \, t : \forall \alpha. \, N \dashv \Theta'} \text{ Agen}
```

Θctx	Assumption
Θ, α ctx	By Cwfuvar
$\Theta \vdash \Gamma \operatorname{env}$	Assumption
$\Theta, \alpha \vdash \Gamma \operatorname{env}$	Weakening
$\Theta' \longrightarrow \Omega$	Assumption
$\Theta', \alpha \longrightarrow \Omega, \alpha$	By Cuvar
Ωctx	Assumption
Ω, α ctx	By Cwfuvar
$\begin{split} &\ \Theta, \alpha\ ; \Gamma \vdash t \colon [\Omega, \alpha] N \\ &\ \Theta\ , \alpha; \Gamma \vdash t \colon [\Omega] N \\ &\ \Theta\ ; \Gamma \vdash \Lambda \alpha. t \colon \forall \alpha. ([\Omega] N) \\ &\ \Theta\ ; \Gamma \vdash \Lambda \alpha. t \colon [\Omega] (\forall \alpha. N) \end{split}$	By i.h. (term size decreases) By definitions of $\ -\ $ and $[-]-$ By Dgen By definition of $[-]-$

• Case $\frac{\Theta; \Gamma \vdash t: N \dashv \Theta'}{\Theta; \Gamma \vdash \{t\}: \downarrow N \dashv \Theta'} \text{ Athunk}$

	$\Theta; \Gamma \vdash t : \mathbb{N} \dashv \Theta'$	Subderivation
	$\ \Theta\ ; \Gamma \vdash t : [\Omega] N$	By i.h. (term size decreases)
	$\ \Theta\ ; \Gamma \vdash \{t\} : \downarrow [\Omega] N$	By Dthunk
B	$\ \Theta\ ; \Gamma \vdash t : [\Omega] \downarrow \mathbb{N}$	By definition of [—]—

• Case Θ ; $\Gamma \vdash \nu$: $P \dashv \Theta'$

$$\frac{\Theta, \Gamma \vdash v : \Gamma \vdash \Theta}{\Theta; \Gamma \vdash \text{return } v : \uparrow P \dashv \Theta'} \text{ Areturn}$$

Symmetric to Athunk case.

• Case
$$\begin{array}{c} \Theta; \Gamma \vdash \nu: \downarrow M \dashv \Theta' \quad \Theta'; \Gamma \vdash s: M \gg \uparrow Q \dashv \Theta'' \quad \Theta'' \vdash P \leq^+ Q \dashv \Theta''' \\ \Theta''' \vdash [\Theta'''] Q \leq^+ P \dashv \Theta^{(4)} \quad \Theta^{(5)} = \Theta^{(4)} \restriction \Theta \quad \Theta^{(5)}; \Gamma, x: P \vdash t: N \dashv \Theta^{(6)} \\ \hline \Theta; \Gamma \vdash \mathsf{let} \; x: P = \nu(s); t: N \dashv \Theta^{(6)} \end{array}$$
 Aambiguouslet

Use well-formedness of the first premise:

Θ ctx $\Theta \vdash \Gamma$ env	Assumption Assumption
$\Theta; \Gamma \vdash v \colon {\downarrow}M \dashv \Theta'$	Subderivation
$\Theta \longrightarrow \Theta'$	By Lemma K.5 (Algorithmic typing is w.f)
Θ' ctx	//
$\Theta' \vdash \downarrow M$ type ⁺	"
↓M ground	11

Now use the well-formedness of $\Theta'; \Gamma \vdash s: M \gg \uparrow Q \dashv \Theta'':$

	Θ' ctx	Above
(1)	$\Theta \Longrightarrow \Theta'$	By Lemma C.1 (\Longrightarrow subsumes \longrightarrow)
	$\Theta' \vdash \Gamma env$	By Lemma C.6 (Weak context extension preserves w.f. envs)
	$\Theta' \vdash M$ type ⁻	Inversion (Twfshift↓)
	M ground	By definition of ground
	$[\Theta']M=M$	By Lemma D.5 (Applying a context to a ground type)
(2)	$\Theta' \Longrightarrow \Theta''$	By Lemma K.5 (Algorithmic typing is w.f)
	Θ'' ctx	11
	$\Theta'' \vdash \uparrow Q \ type^-$	11
	$[\Theta''] \uparrow Q = \uparrow Q$	"

Next use the well-formedness of $\Theta'' \vdash \mathsf{P} \leq^+ \mathsf{Q} \dashv \Theta''' \texttt{:}$

Θ'' ctx	Above
P ground	P annotation
$[\Theta'']Q=Q$	By definition of [–]–
$\Theta^{\prime\prime\prime}$ ctx	By Lemma K.5 (Algorithmic typing is w.f)
$\begin{array}{c} \Theta^{\prime\prime\prime} \ \text{ctx} \\ \Theta^{\prime\prime} \ \longrightarrow \Theta^{\prime\prime\prime} \end{array}$	By Lemma K.5 (Algorithmic typing is w.f) "

And the well-formedness of $\Theta''' \vdash [\Theta'''] Q \leq^+ P \dashv \Theta^{(4)}$:

$\Theta^{\prime\prime\prime}$ ctx	Above
$[\Theta''']Q$ ground	Above
$[\Theta''']P = P$	By Lemma D.5 (Applying a context to a ground type)

$\Theta^{(4)}$ ctx	By Lemma K.5 (Algorithmic typing is w.f)
$\Theta^{\prime\prime\prime} \longrightarrow \Theta^{(4)}$	//

Use the well-formedness of the restricted context:

	Θctx	Above
	$\Theta^{(4)}$ ctx	Above
	$\Theta'' \Longrightarrow \Theta'''$	By Lemma C.1 (\Longrightarrow subsumes \longrightarrow)
	$\Theta^{\prime\prime\prime} \Longrightarrow \Theta^{(4)}$	By Lemma C.1 (\Longrightarrow subsumes \longrightarrow)
	$\Theta \Longrightarrow \Theta^{(4)}$	Applying Lemma C.4 (Weak context extension is transitive)
		to (1), (2), and above
	$\Theta^{(5)} = \Theta^{(4)} \restriction \Theta$	Premise
	$\Theta^{(5)}$ ctx	By Lemma K.1 (Well-formedness of restricted contexts)
(3)	$\Theta \longrightarrow \Theta^{(5)}$	
(4)	$\Theta^{(5)} \Longrightarrow \Theta^{(4)}$	17

Finally use the well-formedness of $\Theta^{(5)}$; Γ , $x : P \vdash t : N \dashv \Theta''''$:

$ \begin{split} \Theta &\vdash \Gamma \text{env} \\ \Theta \implies \Theta^{(5)} \\ \Theta^{(5)} &\vdash \Gamma \text{env} \\ \Theta &\vdash P \text{type}^+ \\ P \text{ground} \end{split} $	Assumption By Lemma C.1 (\implies subsumes \longrightarrow) By Lemma C.6 (Weak context extension preserves w.f. envs) P annotation
$\Theta^{(5)} \operatorname{ctx} \\ \Theta^{(5)} \vdash \Gamma, \mathbf{x} : \mathrm{Penv} \\ \Theta^{(5)}; \Gamma; \mathbf{x} : \mathrm{P} \vdash \mathbf{t} : \mathrm{N} \dashv \Theta^{(6)}$	Above By Ewfvar Subderivation
$\Theta^{(6)}$ ctx $\Theta^{(5)} \longrightarrow \Theta^{(6)}$	By Lemma K.5 (Algorithmic typing is w.f)

Use Lemma N.1 (Extended complete context) to obtain a complete context for the second to fourth judgments:

$\Theta^{(5)} \longrightarrow \Theta^{(6)}$	Above
$\Theta^{(6)} \longrightarrow \Omega$	Assumption
$\Theta^{(5)} \longrightarrow \Omega$	By Lemma D.3 (Context extension is transitive)
$\Theta^{(4)}$ ctx	Above
Ω ctx	Assumption
$\Theta^{(5)} \longrightarrow \Omega$	Above
$\Theta^{(5)} \Longrightarrow \Theta^{(4)}$	Above
$\Theta^{(5)} = \Theta^{(4)} \restriction \Theta$	Above
$\Theta^{(4)} \upharpoonright \Theta \longrightarrow \Omega$	Substituting using above
$\Theta^{(4)} \upharpoonright \Theta^{(5)} \longrightarrow \Omega$	By Lemma N.2 (Identical restricted contexts)
Ω' ctx	By Lemma N.1 (Extended complete context)
$\Theta^{(4)} \longrightarrow \Omega'$	//
$\Omega \Longrightarrow \Omega'$	11

$\Theta^{\prime\prime\prime} \longrightarrow \Theta^{(4)}$	Above
$\Theta''' \longrightarrow \Omega'$	By Lemma D.3 (Context extension is transitive)
$\Theta'' \longrightarrow \Theta'''$	Above
$\Theta'' \longrightarrow \Omega'$	By Lemma D.3 (Context extension is transitive)

Restrict Ω' such that Θ' extends to it:

$$\begin{array}{l}
\Theta'' \Longrightarrow \Omega' \\
\Theta' \Longrightarrow \Omega' \\
\text{Let } \Omega'' = \Omega' \upharpoonright \Theta'. \\
\Omega'' \text{ ctx} \\
\Theta' \longrightarrow \Omega'' \\
\Omega'' \Longrightarrow \Omega'
\end{array}$$

By Lemma C.1 (\Longrightarrow subsumes \longrightarrow)

By Lemma C.4 (Weak context extension is transitive)

By Lemma K.1 (Well-formedness of restricted contexts)

Apply the induction hypothesis to the first premise:

Θctx	Above
$\Theta \vdash \Gamma$ env	Above
$\Theta' \longrightarrow \Omega''$	Above
Ω'' ctx	Above
$\Theta; \Gamma \vdash u \colon {\downarrow} \mathcal{M} \dashv \Theta'$	Subderivation
$\ \Theta\ ; \Gamma \vdash v \colon [\Omega''] \downarrow M$	By i.h. (term size decreases)
$\Omega'' \vdash {\downarrow}M$ type ⁻	By Lemma D.4 (Context extension preserves w.f.)
$\Omega'' \Longrightarrow \Omega'$	Above
$[\Omega']M$ ground	By Lemma D.5 (Applying a context to a ground type)
Ω'' ctx	Above
Ω' ctx	Above
$\ \Omega''\ \vdash [\Omega'']M \cong^{-} [\Omega']M$	By Lemma F.3 (\Longrightarrow leads to isomorphic types (ground))
$\ \Theta\ \vdash [\Omega'']M \cong^- [\Omega']M$	By Lemma O.1 (Weak context extension maintains variables) and Lemma K.4 (Context extension maintains variables)

Next apply the induction hypothesis to the spine premise:

Θ' ctx	Above
$\Theta' \vdash \Gamma$ env	Above
$\Theta'' \longrightarrow \Omega'$	Above
Ω' ctx	Above
$\Theta'; \Gamma \vdash s \colon M \gg \uparrow Q \dashv \Theta''$	Subderivation
$\Theta' \vdash M$ type ⁻	Above
$[\Theta']\mathcal{M}=\mathcal{M}$	Above
$\left\ \Theta \right\ ;\Gamma dash s \colon [\Omega']M \gg M'$	By i.h. (term size decreases)
$\ \Theta\ \vdash [\Omega'] \uparrow Q \cong^{-} \mathcal{M}'$	11
$M' = \uparrow Q'$	Declarative typing rules preserve shift structure
$\ \Theta\ $; $\Gamma \vdash s$: $[\Omega']M \gg \uparrow Q'$	Substituting above
$\left\ \Theta\right\ ;\Gamma\vdash s\colon [\Omega'']M\gg {\uparrow}Q''$	By Lemma J.1 (Isomorphic environments type the same terms), using the fact that declarative typing rules preserve shift structure

$$\|\Theta\| \vdash \uparrow Q' \cong^- \uparrow Q''$$

Show the third premise of Dambiguouslet, first by establishing one direction of the isomorphism:

//

(5)	Θ'' ctx	Shown above
(6)	$\Theta''' \longrightarrow \Omega'$	Above
(7)	$\Theta'' \vdash P \ type^+$	Above
(8)	P ground	Above
	$\Theta'' \vdash \uparrow Q \ type^-$	Above
(9)	$\Theta'' \vdash Q \ type^+$	By inversion of Twfshift↑
	$[\Theta'']\uparrow Q=\uparrow Q$	By Lemma K.5 (Algorithmic typing is w.f)
(10)	$[\Theta'']Q = Q$	By definition of [–]–
	$\ \Theta''\ \vdash P \leq^+ [\Omega'] Q$	By (5 – 10) & Theorem F.6 (Soundness of a

Now establish the other direction:

$$\begin{split} \Theta''' & \text{ctx} \\ \Theta^{(4)} & \longrightarrow \Omega' \\ \Theta''' \vdash [\Theta'''] Q & \text{type}^+ \\ & [\Theta'''] Q & \text{ground} \\ \Theta''' \vdash P & \text{type}^+ \\ & [\Theta'''] P = P \\ \\ & \|\Theta'''\| \vdash [\Theta'''] Q \leq^+ [\Omega'] P \end{split}$$

Show the fourth premise of Dambiguouslet:

$$\begin{split} \|\Theta'''\| &\vdash [\Theta''']Q \leq^+ P \\ \|\Theta'''\| &\vdash [\Theta''']Q \cong^+ [\Omega']Q \\ \|\Theta'''\| &\vdash [\Omega']Q \leq^+ P \\ \|\Theta''\| &\vdash [\Omega']Q \leq^+ P \\ \|\Theta\| &\vdash [\Omega']Q \leq^+ P \\ \|\Theta\| &\vdash [\Omega']Q \leq^+ P \\ \|\Theta\| &\vdash [\Omega']Q \cong^- M' \\ \|\Theta\| &\vdash [\Omega']\uparrow Q \cong^- M' \\ \|\Theta\| &\vdash [\Omega']\uparrow Q \cong^- \Lambda' \\ \|\Theta\| &\vdash [\Omega']Q \cong^+ Q' \\ \|\Theta\| &\vdash [\Omega']Q \cong^+ Q' \\ \|\Theta\| &\vdash P \cong^+ Q' \\ \|\Theta\| &\vdash P \leq^- \uparrow Q' \\ \|\Theta\| &\vdash \uparrow P \leq^- \uparrow Q'' \\ \end{split}$$

And now show the final premise of Dambiguouslet:

	$\Theta \vdash N \ type^-$	Assumption
(11)	$\Theta^{(5)}$ ctx	Above
	$\Theta \vdash \Gamma \operatorname{env}$	Assumption
	$\Theta^{(5)} \vdash \Gamma \operatorname{env}$	By Lemma C.6 (Weak context extension preserves w.f. envs)
	$\Theta^{(5)} \vdash P \ type^+$	By Lemma D.4 (Context extension preserves w.f.)
	P ground	Above

By (5 – 10) & Theorem F.6 (Soundness of algorithmic subtyping) Shown above

Above By Lemma E.1 (Applying context to the type preserves w.f.) Above By Lemma D.4 (Context extension preserves w.f.) By Lemma D.5 (Applying a context to a ground type)

By Theorem F.6 (Soundness of algorithmic subtyping)

By Lemma D.5 (Applying a context to a ground type) By Lemma F.5 (→ leads to isomorphic types (ground)) By Lemma B.7 (Declarative subtyping is transitive) By Lemma D.2 (Equality of declarative contexts) By Lemma C.3 (Equality of declarative contexts (weak)) By Lemma C.3 (Equality of declarative contexts (weak))

We have shown the subtyping in both directions

Above Substituting definition of Q' into above Inversion (\leq^{\pm} Dshift \uparrow) By Lemma B.7 (Declarative subtyping is transitive) By \leq^{\pm} Dshift \uparrow By Lemma B.7 (Declarative subtyping is transitive)

(12) (13)	$\Theta^{(5)} \vdash \Gamma, \mathbf{x} : \mathbf{P} \text{ env}$ $\Theta^{(6)} \longrightarrow \Omega$	By Ewfvar Assumption
	$\ \Theta\ ; \Gamma, x: P \vdash t: [\Omega]N$	By (11–13) & i.h.

Finally apply Dambiguouslet:

 $\label{eq:states} \mathbb{I} \Theta \|\,; \Gamma \vdash \mathsf{let}\; x : \mathsf{P} = \nu(s); t \colon [\Omega] \mathsf{N} \qquad \qquad \mathsf{By Dambiguouslet}$

• Case

$$\begin{array}{c} \Theta; \Gamma \vdash \nu : {\downarrow} M \dashv \Theta' \\ \Theta; \Gamma \vdash s : M \gg {\uparrow} Q \dashv \Theta'' & FEV(Q) = \emptyset & \Theta''' = \Theta'' \upharpoonright \Theta \\ \Theta; \Gamma \vdash \mathsf{let} \ x = \nu(s); t : N \dashv \Theta^{(4)} \end{array} \\ \begin{array}{c} \mathsf{Aunambiguouslet} \\ \mathsf{Aunambiguouslet} \end{array}$$

As with the Aambiguouslet case, first use the well-formedness of the first premise:

Θ ctx	Assumption
$\Theta \vdash \Gamma$ env	Assumption
$\Theta; \Gamma \vdash \nu : {\downarrow} M \dashv \Theta'$	Subderivation
$\Theta \longrightarrow \Theta'$	By Lemma K.5 (Algorithmic typing is w.f)
Θ' ctx	11
$\Theta' \vdash {\downarrow}M$ type ⁺	//
$\downarrow M$ ground	11

Now use the well-formedness of $\Theta'; \Gamma \vdash s: M \gg \uparrow Q \dashv \Theta'':$

	Θ' ctx	Above
(1)	$\Theta \Longrightarrow \Theta'$	By Lemma C.1 (\Longrightarrow subsumes \longrightarrow)
	$\Theta' \vdash \Gamma$ env	By Lemma C.6 (Weak context extension preserves w.f. envs)
	$\Theta' \vdash M$ type ⁻	Inversion (Twfshift↓)
	M ground	By definition of ground
	$[\Theta']M=M$	By Lemma D.5 (Applying a context to a ground type)
(2)	$\Theta' \Longrightarrow \Theta''$	By Lemma K.5 (Algorithmic typing is w.f)
	Θ'' ctx	11
	$\Theta'' \vdash \uparrow Q \ type^-$	11

Use the well-formedness of the restricted context:

	Θ ctx	Above
	Θ'' ctx	Above
	$\Theta \Longrightarrow \Theta''$	Applying Lemma C.4 (Weak context extension is transitive) to (1) and (2)
	$\Theta'''=\Theta''\restriction\Theta$	Premise
(3)	$\begin{array}{c} \Theta''' \ \mathrm{ctx} \\ \Theta \longrightarrow \Theta''' \\ \Theta''' \Longrightarrow \Theta'' \end{array}$	By Lemma K.1 (Well-formedness of restricted contexts) "

Finally use the well-formedness of $\Theta'''; \Gamma, x: P \vdash t: N \dashv \Theta^{(4)} \colon$

$\Theta \vdash \Gamma$ env	Assumption
$\Theta \Longrightarrow \Theta'''$	By Lemma C.1 (\Longrightarrow subsumes \longrightarrow)
$\Theta''' \vdash \Gamma$ env	By Lemma C.6 (Weak context extension preserves w.f. envs)
$\Theta \vdash P \ type^+$	P annotation
P ground	"
$\Theta^{\prime\prime\prime}$ ctx	Above
$\Theta^{\prime\prime\prime} \vdash \Gamma, x : P env$	By Ewfvar
$\Theta'''; \Gamma; x: P \vdash t: N \dashv \Theta^{(4)}$	Subderivation
$\begin{array}{c} \Theta^{(4)} \ \text{ctx} \\ \Theta^{\prime\prime\prime} \longrightarrow \Theta^{(4)} \end{array}$	By Lemma K.5 (Algorithmic typing is w.f)

Use Lemma N.1 (Extended complete context) to obtain a complete context for the second judgment:

$\begin{array}{ccc} \Theta^{\prime\prime\prime} & \longrightarrow \Theta^{(4)} \\ \Theta^{(4)} & \longrightarrow \Omega \end{array}$	Above Assumption
$\Theta''' \longrightarrow \Omega$	By Lemma D.3 (Context extension is transitive)
Θ'' ctx	Above
Ω ctx	Assumption
$\Theta^{\prime\prime\prime} \longrightarrow \Omega$	Above
$\Theta''' \Longrightarrow \Theta''$	Above
$\Theta^{\prime\prime\prime}=\Theta^{\prime\prime}\restriction\Theta$	Above
$\Theta'' {\restriction \Theta} \longrightarrow \Omega$	Substituting using above
$\Theta''\!\upharpoonright\! \Theta''' \longrightarrow \Omega$	By Lemma N.2 (Identical restricted contexts)
Ω' ctx	By Lemma N.1 (Extended complete context)
$\Theta'' \longrightarrow \Omega'$	//
$\Omega \Longrightarrow \Omega'$	

Restrict Ω' such that Θ' extends to it:

$\Theta'' \Longrightarrow \Omega'$	By Lemma C.1 (\Longrightarrow subsumes \longrightarrow)
$\Theta' \Longrightarrow \Omega'$	By Lemma C.4 (Weak context extension is transitive)
Let $\Omega'' = \Omega' \upharpoonright \Theta'$.	
Ω'' ctx	By Lemma K.1 (Well-formedness of restricted contexts)
$\Theta' \longrightarrow \Omega''$	11
$\Omega'' \Longrightarrow \Omega'$	11

Apply the induction hypothesis to the first premise:

Θctx	Above
$\Theta \vdash \Gamma$ env	Above
$\Theta' \longrightarrow \Omega''$	Above
Ω'' ctx	Above
$\Theta; \Gamma \vdash \nu : \downarrow \mathcal{M} \dashv \Theta'$	Subderivation
$\ \Theta\ ; \Gamma \vdash \nu \colon [\Omega''] \downarrow M$	By i.h. (term size decreases)

$egin{array}{c} \Omega'' dash ot M \ { m type}^- \ \Omega'' \Longrightarrow \Omega' \end{array}$	By Lemma E.1 (Applying context to the type preserves w.f.) Above
$[\Omega']M$ ground	By Lemma D.5 (Applying a context to a ground type)
Ω'' ctx	Above
Ω' ctx	Above
$\ \Omega''\ \vdash [\Omega'']M \cong^{-} [\Omega']M$	By Lemma F.3 (\Longrightarrow leads to isomorphic types (ground))
$\ \Theta\ \vdash [\Omega'']M \cong^{-} [\Omega']M$	By Lemma O.1 (Weak context extension maintains variables) and
	Lemma K.4 (Context extension maintains variables)

Next apply the induction hypothesis to the spine premise:

Θ' ctx	Above
$\Theta' \vdash \Gamma$ env	Above
$\Theta'' \longrightarrow \Omega'$	Above
Ω' ctx	Above
$\Theta'; \Gamma dash s \colon M \gg {\uparrow} Q \dashv \Theta''$	Subderivation
$\Theta' \vdash M$ type ⁻	Above
$[\Theta']M=M$	Above
$\ \Theta\ $; $\Gamma \vdash s$: $[\Omega']M \gg M'$	By i.h. (term size decreases)
$\ \Theta\ \vdash [\Omega'] \uparrow Q \cong^{-} M'$	11
$M' = \uparrow Q'$	Declarative typing rules preserve shift structure
$\ \Theta\ $; $\Gamma \vdash s : [\Omega']M \gg \uparrow Q'$	Substituting above equation
$\left\ \Theta\right\ ;\Gamma\vdash \mathfrak{s}\colon [\Omega'']M\gg \uparrow Q''$	By Lemma J.1 (Isomorphic environments type the same terms), using the fact that declarative typing rules preserve shift structure
$\ \Theta\ \vdash {\uparrow} Q' \cong^- {\uparrow} Q''$	"

Next apply the induction hypothesis to the last premise:

	$\Theta \vdash N \ type^-$	Assumption
(4)	$\Theta^{\prime\prime\prime}$ ctx	Above
	$\Theta \vdash \Gamma$ env	Assumption
	$\Theta''' \vdash \Gamma env$	By Lemma C.6 (Weak context extension preserves w.f. envs)
	$\Theta''' \vdash Q \ type^+$	By Lemma D.4 (Context extension preserves w.f.)
	$FEV(Q) = \emptyset$	Premise
	Q ground	By definition of ground
(5)	$\Theta''' \vdash \Gamma, x : Q env$	By Ewfvar
	$\Theta^{(4)} \longrightarrow \Omega$	Assumption
	$\Theta^{\prime\prime\prime} \longrightarrow \Theta^{(4)}$	Above
(6)	$\Theta^{\prime\prime\prime} \longrightarrow \Omega$	By Lemma D.3 (Context extension is transitive)
	$\ \Theta\ ; \Gamma, x: Q \vdash t: [\Omega]N$	By (4–6) & i.h.

Rework the declarative judgment we got from the induction hypothesis to match the form we need to apply Dunambiguouslet:

$\ \Theta\ \vdash [\Omega'] \uparrow Q \cong^{-} M'$	Above
$\ \Theta\ \vdash \uparrow Q \cong^{-} \mathcal{M}'$	By Lemma D.5 (Applying a context to a ground type)
$\ \Theta\ \vdash \uparrow Q \cong^- \uparrow Q'$	Substituting in the definition of Q'
$\ \Theta\ \vdash {\uparrow} Q \cong^- {\uparrow} Q''$	By Lemma B.7 (Declarative subtyping is transitive)

$ \begin{split} \ \Theta\ \vdash Q \cong^+ Q'' \\ \ \Theta\ ; \Gamma \! , x : Q'' \vdash t : [\Omega] N \end{split} $	Inversion (\leq^{\pm} Ashift \uparrow) Using Lemma J.1 (Isomorphic environments type the same terms)
	to change the typing environment

Now show that for all positive types P, if $\|\Theta\|$; $\Gamma \vdash s : [\Omega']M \gg \uparrow P$ then $\|\Theta\| \vdash Q'' \cong^+ P$. Let P be an arbitrary positive type such that $\|\Theta\|$; $\Gamma \vdash s : [\Omega']M \gg \uparrow P$.

(7)	$\begin{split} \ \Theta'\ ; \Gamma \vdash s \colon [\Omega']M \gg \uparrow P \\ \Theta' ; \Gamma \vdash s \colon M \gg \uparrow R \dashv \widehat{\Theta}'' \\ [\Omega']\uparrow R = \uparrow P \end{split}$	By Lemma D.2 (Equality of declarative contexts) By Theorem O.4 (Completeness of algorithmic typing), for some R and $\hat{\Theta}''$ (term size decreases)
	$\Theta'; \Gamma \vdash s : M \gg \uparrow Q \dashv \Theta''$	Subderivation
	$\uparrow R = \uparrow Q$	By Lemma H.1 (Algorithmic subtyping is deterministic)
	$[\Omega']\uparrow Q = [\Omega']\uparrow R$	Applying Ω' to both sides
	$[\Omega']\uparrow Q=\uparrow P$	Substituting using (7)
(9)	$[\Omega']Q = P$	By definition of [—]—
	$\ \Theta\ \vdash P\leq^+P$	By Lemma B.1 (Declarative subtyping is reflexive)
	$\ \Theta\ \vdash P\cong^+P$	By definition of \cong^{\pm}
	$\ \Theta\ \vdash [\Omega']Q \cong^+ P$	Substituting using (8)
	$\ \Theta\ \vdash [\Omega']Q \cong^+ Q'$	Above
	$\ \Theta\ \vdash Q''\cong^+ P$	Applying Lemma B.7 (Declarative subtyping is transitive) twice

Finally apply Dunambiguouslet:

 $\texttt{IS} \quad \|\Theta\|\,; \Gamma \vdash \mathsf{let}\; x = \nu(s); t \colon [\Omega] \mathsf{N} \qquad \qquad \mathsf{By Dunambiguouslet}$

• Case

 $\overline{\Theta; \Gamma \vdash \varepsilon: N \gg N \dashv \Theta} \text{ Aspinenil}$

R\$	$\ \Theta\ $; $\Gamma \vdash \epsilon$: $[\Omega] N \gg [\Omega] N$	By Dspinenil
ß	$\ \Theta\ \vdash [\Omega] N \cong^{-} [\Omega] N$	By Lemma B.1 (Declarative subtyping is reflexive)

• Case
$$\frac{\Theta; \Gamma \vdash \nu : P \dashv \Theta' \qquad \Theta' \vdash P \leq^+ [\Theta'] Q \dashv \Theta'' \qquad \Theta''; \Gamma \vdash s : [\Theta''] N \gg M \dashv \Theta'''}{\Theta; \Gamma \vdash \nu, s : Q \to N \gg M \dashv \Theta'''} \text{ Aspinecons}$$

Assumption
Inversion (Twfarrow)
Inversion (Twfarrow)
Assumption
By definition of $[-]-$
By equality
Assumption
Assumption
Assumption

Apply typing well-formedness to the first premise:

$\Theta \longrightarrow \Theta'$	By Lemma K.5 (Algorithmic typing is w.f)
Θ' ctx	11
$\Theta' \vdash P \ type^+$	11
P ground	11

Now apply the well-formedness of subtyping to the second premise:

Θ' ctx	Above
P ground	Above
$[\Theta'][\Theta']Q = [\Theta']Q$	By Lemma D.6 (Context application is idempotent)
Θ'' ctx	By Lemma E.2 (Algorithmic subtyping is w.f.)
$\Theta' \longrightarrow \Theta''$	11
$[\Theta''][\Theta']Q$ ground	11
$[\Theta'']Q$ ground	By Lemma D.8 (Extending context preserves groundness)

Apply typing well-formedness to the last premise:

$\Theta'' \vdash N \ type^-$	By Lemma D.4 (Context extension preserves w.f.)
$\Theta'' \vdash [\Theta''] N \text{ type}^-$	By Lemma E.1 (Applying context to the type preserves w.f.)
$[\Theta''][\Theta'']N = [\Theta'']N$	By Lemma D.6 (Context application is idempotent)
$\Theta \vdash \Gamma$ env	Assumption
$\Theta''' \vdash \Gamma$ env	By Lemma C.6 (Weak context extension preserves w.f. envs)
$\begin{array}{c} \Theta'' \Longrightarrow \Theta''' \\ \Theta''' \ \text{ctx} \end{array}$	By Lemma K.5 (Algorithmic typing is w.f)

Restrict Ω such that Θ'' extends to it:

$egin{array}{ccc} \Theta''' & \longrightarrow \Omega \ \Omega & \operatorname{ctx} \ \Theta''' & \Longrightarrow \Omega \ \Theta'' & \Longrightarrow \Omega \end{array}$	Assumption Assumption By Lemma C.1 (\implies subsumes \longrightarrow) By Lemma C.4 (Weak context extension is transitive)
$egin{array}{c} \Omega {\upharpoonright} \Theta'' \ \operatorname{ctx} \ \Theta'' \longrightarrow \Omega {\upharpoonright} \Theta'' \ \Omega {\upharpoonright} \Theta'' \Longrightarrow \Omega \end{array}$	By Lemma K.1 (Well-formedness of restricted contexts) " "
$\Theta' \Longrightarrow \Omega$	By Lemma C.1 (\implies subsumes \longrightarrow) and Lemma C.4 (Weak context extension is transitive)
$\Omega \vdash P$ type ⁺	By Lemma C.5 (Weak context extension preserves well-formedness)
$\ (\Omega \restriction \Theta'')\ \vdash [\Omega] P \cong^+ [(\Omega \restriction \Theta'')] P$	By Lemma F.3 (\Longrightarrow leads to isomorphic types (ground))
$\Theta \longrightarrow \Omega {\upharpoonright} \Theta''$	By Lemma D.3 (Context extension is transitive)
$\ \Theta\ \vdash [\Omega] P \cong^+ [(\Omega \restriction \Theta'')] P$	By Lemma D.2 (Equality of declarative contexts)

Applying the induction hypothesis to the first premise:

$\ \Theta\ $; $\Gamma \vdash \nu$: $[(\Omega \upharpoonright \Theta'')]$ P	By i.h. (term size decreases)
$\ \Theta\ $; $\Gamma \vdash v$: P	By Lemma D.5 (Applying a context to a ground type)

Applying soundness to the second premise:

$\Theta' \longrightarrow \Omega \restriction \Theta''$	By transitivity
$\Theta' \vdash [\Theta']Q$ type ⁺	By Lemma D.4 (Context extension preserves w.f.)
	and Lemma K.3 (Substitution preserves well-formedness of types)
$\ \Theta'\ \vdash P\leq^+[\Omega\upharpoonright\Theta''][\Theta']Q$	By Theorem F.6 (Soundness of algorithmic subtyping)
$\ \Theta'\ \vdash P \leq^+ [\Omega \restriction \Theta''] Q$	By Lemma F.4 (\longrightarrow leads to isomorphic types)
$\ \Theta\ \vdash P \leq^+ [\Omega] Q$	By Lemma F.3 (\implies leads to isomorphic types (ground)) and Lemma D.2 (Equality of declarative contexts)

Apply the induction hypothesis to the last premise:

$$\begin{split} \|\Theta''\|\,;\Gamma\vdash s\colon &[\Omega][\Theta'']N\gg M\,'\quad \text{By i.h. (term size decreases)}\\ \|\Theta''\|\vdash &[\Omega]M\cong^-M\,'\quad '' \end{split}$$

Reworking the spine declarative judgment:

$$\begin{split} \|\Theta''\| \vdash [\Omega][\Theta'']N \cong^{-} [\Omega]N & & By Lemma F.2 (\implies beads to isomorphic types) \\ \|\Theta''\|; \Gamma \vdash s : [\Omega]N \gg M'' & & By Lemma J.1 (Isomorphic environments type the same terms) \\ \|\Theta''\| \vdash M' \cong^{-} M'' & & '' \\ \|\Theta\|; \Gamma \vdash s : [\Omega]N \gg M'' & & By Lemma D.2 (Equality of declarative contexts) \end{split}$$

Applying the declarative judgment, we have:

$$\begin{split} \|\Theta\|; \Gamma \vdash \nu, s: [\Omega]Q \to [\Omega]N \gg [\Omega]M & \text{By Dspinecons} \\ \|\Theta\|; \Gamma \vdash \nu, s: [\Omega](Q \to N) \gg M'' & \text{By definition of } [-]-\\ \|\Theta''\| \vdash [\Omega]M \cong^{-} M'' & \text{By Lemma B.7 (Declarative subtyping is transitive)} \\ \|\Theta\| \vdash [\Omega]M \cong^{-} M'' & \text{By Lemma D.2 (Equality of declarative contexts)} \end{split}$$

• Case
$$\frac{\Theta; \Gamma \vdash s : N \gg M \dashv \Theta' \qquad \alpha \notin FUV(N)}{\Theta; \Gamma \vdash s : (\forall \alpha. N) \gg M \dashv \Theta'} \text{ Aspinetypeabsnoting}$$

	$\Theta \vdash \forall \alpha. N \text{ type}^-$	Assumption
	$\Theta, \alpha \vdash N \text{ type}^-$	Inversion (Twfforall)
(1)	$\Theta \vdash N \ type^-$	By Lemma K.2 (Type well-formed with type variable removed) and $\alpha \notin FUV(N)$
	$[\Theta](\forall \alpha. N) = \forall \alpha. N$	Assumption
	$\forall \alpha. [\Theta] N = \forall \alpha. N$	By definition of [–]–
(2)	$[\Theta]N = N$	By equality
(3)	Θ ctx	Assumption
(4)	$\Theta \vdash \Gamma env$	Assumption
(5)	$\Theta' \longrightarrow \Omega$	Assumption
(6)	Ω ctx	Assumption

Apply the induction hypothesis:

$$\begin{split} \|\Theta\|; \Gamma \vdash s : [\Omega] N \gg M' & \text{By i.h. (term size stays the same and} \\ & \text{the number of prenex quantifiers decreases)} \\ \blacksquare & \|\Theta\| \vdash [\Omega] M \cong^{-} M' & '' \end{split}$$

Let P be an arbitrary positive type, such that $\Omega \vdash P$ type⁺:

$[P/\alpha]N = N$	As $\alpha \notin FUV(N)$
$\ \Theta\ $; $\Gamma \vdash s$: $[\Omega][P/\alpha]N \gg M'$	By equality
$\ \Theta\ $; $\Gamma \vdash s$: $[P/\alpha][\Omega]N \gg M'$	By definition of $[-]-$

Applying the declarative judgment:

	$\ \Theta\ $; $\Gamma \vdash s$: $\forall \alpha$. [Ω] N $\gg M'$	By Dspinetypeabs
1 37	$\ \Theta\ $; $\Gamma \vdash s$: $[\Omega](\forall \alpha. N) \gg M'$	By definition of $[-]-$

• Case
$$\frac{\Theta, \hat{\alpha}; \Gamma \vdash s : [\hat{\alpha}/\alpha] N \gg M \dashv \Theta', \hat{\alpha} [= P] \qquad \alpha \in FUV(N)}{\Theta; \Gamma \vdash s : (\forall \alpha. N) \gg M \dashv \Theta', \hat{\alpha} [= P]} \text{ Aspinetypeabsin}$$

(1)	$egin{array}{lll} \Thetadash orall lpha. \ { m N} & { m type}^- \ \Theta, lphadash N & { m type}^- \ \Theta, \widehat{lpha}dash [\widehat{lpha}/lpha] { m N} & { m type}^- \end{array}$	Assumption By Twfforall By Lemma K.3 (Substitution preserves well-formedness of types)
(2)	$\begin{split} [\Theta](\forall \alpha, \mathbf{N}) &= \forall \alpha, \mathbf{N} \\ [\Theta]\mathbf{N} &= \mathbf{N} \\ [\Theta][\widehat{\alpha}/\alpha]\mathbf{N} &= [\widehat{\alpha}/\alpha]\mathbf{N} \\ [\Theta, \widehat{\alpha}][\widehat{\alpha}/\alpha]\mathbf{N} &= [\widehat{\alpha}/\alpha]\mathbf{N} \end{split}$	Assumption By definition of [—]— â fresh By definition of [—]—
	Θctx	Assumption
(3)	$\Theta, \hat{\alpha} \operatorname{ctx}$	By Cwfunsolvedguess
	$\Theta \vdash \Gamma$ env	Assumption
	$\Theta \Longrightarrow \Theta, \hat{lpha}$	By Wcnewunsolvedguess
(4)	$\Theta, \hat{\alpha} \vdash \Gamma \operatorname{env}$	By Lemma C.6 (Weak context extension preserves w.f. envs)
(5)	Ω ctx	Assumption

Use well-formedness of the subderivation:

 $\Theta, \hat{\alpha} \Longrightarrow \Theta, \hat{\alpha} [= P]$ By Lemma K.5 (Algorithmic typing is w.f)

Obtain the solution to $\hat{\alpha}$ from the complete context:

$\Theta', \hat{\alpha} [= P] \longrightarrow \Omega$	Assumption
$\Omega = \Omega', \hat{lpha} = P'$	Inversion (Csolveguess), since Ω is a complete context
$\Omega', \hat{lpha} = P' \ ctx$	Above
$\Omega' \vdash P' type^+$	Inversion (Cwfsolvedguess)
P′ ground	11
$\Omega \vdash P' \ type^+$	By Lemma A.2 (Term well-formedness weakening)
$\Theta', \hat{\alpha} [= P] \longrightarrow \Omega$	Assumption
$\Theta', \widehat{\alpha} [= P] \vdash P' \ type^+$	By Lemma K.4 (Context extension maintains variables)
$\Theta, \widehat{\alpha} \vdash P' \operatorname{type}^+$	By Lemma O.1 (Weak context extension maintains variables)
$\ \Theta\ \vdash P' \ type^+$	Since P' ground

Apply the induction hypothesis:

	$\left\ \Theta\right\ ;\Gamma\vdash s\colon [\Omega][\hat{\alpha}/\alpha]N\gg M'$	By i.h. (Term size stays the same and the number of prenex universal quantifiers decreases. The substitution replaces a positive type by another positive type, so cannot add or remove prenex universal quantifiers.)
R.	$\ \Theta\ \vdash [\Omega]M \cong^{-} M'$	//
	$\ \Theta\ $; $\Gamma \vdash s$: $[\Omega', \hat{\alpha} = P'][\hat{\alpha}/\alpha]N \gg M'$	Substituting $\Omega = \Omega', \hat{\alpha} = P'$ from above
	$\ \Theta\ $; $\Gamma \vdash s$: $[P'/\alpha][\Omega', \hat{\alpha} = P']N \gg M'$	By definition of [–]–
	$\ \Theta\ $; $\Gamma \vdash s$: $[P'/\alpha][\Omega]N \gg M'$	Substituting $\Omega = \Omega', \hat{\alpha} = P'$ from above
	$\ \Theta\ $; $\Gamma \vdash s$: $(\forall \alpha. [\Omega]N) \gg M'$	By Dspinetypeabs
B	$\ \Theta\ $; $\Gamma \vdash s$: $[\Omega](\forall \alpha. N) \gg M'$	By definition of substitution

O' Completeness of typing

O'.1 Lemmas

Lemma 0.1 (Weak context extension maintains variables). If $\Theta \implies \Theta'$ then $FEV(\Theta) \subseteq FEV(\Theta')$ and $FUV(\Theta) = FUV(\Theta')$.

Proof. All rules ensure the left-hand side and right-hand side contexts have the same set of free universal variables. Wcempty, Wcuvar, Wcunsolvedguess, Wcsolveguess, and Wcsolvedguess ensure the left-hand side and right-hand side contexts have the same set of existential variables. The right-hand side context in the Wcnewunsolvedguess and Wcnewunsolvedguess rules have a set of existential variables that is a superset of the set of existential variables on the left-hand side context. \Box

Lemma 0.2 (Reversing context extension from a complete context). If $\Omega \longrightarrow \Theta$ then $\Theta \longrightarrow \Omega$.

Proof. By rule induction on the $\Omega \longrightarrow \Theta$ judgment:

• Case $\xrightarrow{}$ Cempty $\xrightarrow{}$ Cempty

• Case $\Omega \longrightarrow \Theta$ $\Omega, \alpha \longrightarrow \Theta, \alpha$ Cuvar $\Omega \longrightarrow \Theta$ Subderivation

$\blacksquare \Theta, \alpha \longrightarrow \Omega, \alpha \quad \text{By Cuvar}$

•

• Case $\begin{array}{c} \Omega & \longrightarrow \Theta \\ \hline \Omega, \hat{\alpha} & \longrightarrow \Theta, \hat{\alpha} \end{array} \text{Cunsolvedguess} \end{array}$

Impossible since the LHS must be a complete context.

$$\begin{array}{c} \text{Case} & \\ & \\ \hline \Omega, \hat{\alpha} \longrightarrow \Theta, \hat{\alpha} = P \end{array} \text{Csolveguess} \end{array}$$

Impossible since the LHS must be a complete context.

• Case

$$\begin{array}{c} \Omega \longrightarrow \Theta & \|\Omega\| \vdash P \cong^+ Q \\ \hline \Omega, \hat{\alpha} = P \longrightarrow \Theta, \hat{\alpha} = Q \end{array} Csolvedguess$$

$$\begin{array}{c} \Omega \longrightarrow \Theta & \text{Subderivation} \\ \Theta \longrightarrow \Omega & \text{By i.h.} \\ \|\Omega\| \vdash P \cong^+ Q & \text{Premise} \\ \|\Theta\| \vdash P \cong^+ Q & \text{By Lemma D.2 (Equality of declarative contexts)} \\ \|\Theta\| \vdash Q \cong^+ P & \text{By definition of } -\vdash - \cong^{\pm} - \end{array}$$

$$\begin{array}{c} \blacksquare \\ \Theta, \hat{\alpha} = Q \longrightarrow \Omega, \hat{\alpha} = P & \text{By Csolvedguess} \end{array}$$

Lemma 0.3 (Pulling back restricted contexts). If $\Theta \longrightarrow \Theta'$ and $\Theta' \upharpoonright \Theta'' \longrightarrow \Theta'''$, then $\Theta \upharpoonright \Theta'' \longrightarrow \Theta'''$. *Proof.* By rule induction on the $\Theta \longrightarrow \Theta'$ judgment:

• Case
$$\xrightarrow[\cdot \quad \longrightarrow \\ \cdot \quad \longrightarrow \\ \cdot \quad \\$$
 Cempty

 $\blacksquare \quad \cdot \upharpoonright \Theta'' \longrightarrow \Theta''' \quad \text{Assumption}$

• Case
$$\frac{\Theta \longrightarrow \Theta'}{\Theta, \alpha \longrightarrow \Theta', \alpha} \text{ Cuvar}$$

$$\begin{array}{lll} \Theta', \alpha \upharpoonright \Theta'' & \longrightarrow \Theta''' & \text{Assumption} \\ \Theta' \upharpoonright \bar{\Theta}'' & \longrightarrow \bar{\Theta}''' & \text{Inversion} (\upharpoonright \text{uvar}) \\ \Theta'' &= \bar{\Theta}'', \alpha & '' \\ \Theta''' &= \bar{\Theta}''', \alpha & '' \\ \Theta & \longrightarrow \Theta' & \text{Subderivation} \\ \Theta \upharpoonright \bar{\Theta}'' & \longrightarrow \bar{\Theta}''' & \text{By i.h.} \end{array}$$

$$(\Theta \upharpoonright \bar{\Theta}''), \alpha \longrightarrow \bar{\Theta}''', \alpha \quad \text{By Cuvar}$$

$$\mathfrak{S} \quad \Theta, \alpha \upharpoonright \Theta'' \longrightarrow \Theta''' \qquad \text{By } \upharpoonright \text{uvar}$$

• Case $\begin{array}{c} \Theta \longrightarrow \Theta' \\ \hline \Theta, \hat{\alpha} \longrightarrow \Theta', \hat{\alpha} \end{array} \text{ Cunsolvedguess} \end{array}$

• Case
$$\frac{\Theta \longrightarrow \Theta' \qquad \|\Theta\| \vdash P \cong^+ Q}{\Theta, \hat{\alpha} = P \ \longrightarrow \Theta', \hat{\alpha} = Q} \text{ Csolvedguess}$$

Prove these two cases together.

 $\Theta', \hat{\alpha} \, [= P] \upharpoonright \Theta'' \longrightarrow \Theta''' \quad \text{Assumption}$

Taking cases on whether $\hat{\alpha} [= Q] \in \Theta''$:

$$\begin{array}{ccc} \textbf{- Case } \hat{\alpha} \, [=Q] \in \Theta'': \\ & \Theta' \upharpoonright \bar{\Theta}'' \longrightarrow \bar{\Theta}''' & \text{Inversion } (\restriction \text{guessin}) \\ & \Theta'' = \bar{\Theta}'', \hat{\alpha} \, [=Q] & '' \\ & \Theta''' = \bar{\Theta}''', \hat{\alpha} \, [=P] & '' \\ & \Theta \upharpoonright \bar{\Theta}'' \longrightarrow \bar{\Theta}''' & \text{By i.h.} \\ & (\Theta \upharpoonright \bar{\Theta}''), \hat{\alpha} \, [=P] \longrightarrow \bar{\Theta}''', \hat{\alpha} \, [=P] & \text{By Cunsolvedguess/ Csolvedguess} \\ \hline \mathbf{re} & \Theta, \hat{\alpha} \, [=P] \upharpoonright \Theta'' \longrightarrow \Theta''' & \text{By } \text{guessin} \end{array}$$

- Case
$$\hat{\alpha} [= Q] \notin \Theta''$$
:

 $\begin{array}{ccc} \Theta' \upharpoonright \Theta'' & \longrightarrow \Theta''' & \text{ Inversion (} \texttt{[guessnotin)} \\ \Theta \upharpoonright \Theta'' & \longrightarrow \Theta''' & \text{By i.h.} \\ \texttt{Isr} & \Theta, \hat{\alpha} \, \texttt{[= P]} \upharpoonright \Theta'' & \longrightarrow \Theta''' & \text{By } \texttt{[guessnotin)} \end{array}$

O'.2 Statement

Theorem 0.4 (Completeness of algorithmic typing). *If* Θ ctx, $\Theta \vdash \Gamma$ env, $\Theta \longrightarrow \Omega$, and Ω ctx, *then*:

- If $\|\Theta\|$; $\Gamma \vdash \nu$: P then $\exists \Theta'$ such that Θ ; $\Gamma \vdash \nu$: $P \dashv \Theta'$ and $\Theta' \longrightarrow \Omega$.
- If $||\Theta||$; $\Gamma \vdash t : N$ then $\exists \Theta'$ such that Θ ; $\Gamma \vdash t : N \dashv \Theta'$ and $\Theta' \longrightarrow \Omega$.
- If $\|\Theta\|$; $\Gamma \vdash s : [\Omega]N \gg M$, $\Theta \vdash N$ type⁻, and $[\Theta]N = N$, then $\exists \Theta', \Omega'$ and M' such that $\Theta; \Gamma \vdash s : N \gg M' \dashv \Theta', \Omega \Longrightarrow \Omega', \Theta' \longrightarrow \Omega', \|\Theta\| \vdash [\Omega']M' \cong^- M$, $[\Theta']M' = M'$, and Ω' ctx.

Proof. By mutual induction with Theorem N.3 (Soundness of algorithmic typing), using the same judgment ordering as in Lemma J.1 (Isomorphic environments type the same terms).

• Case $\frac{x: P \in \Gamma}{\ \Theta\ ; \Gamma \vdash x: P} \text{ Dvar}$	
$x: P \in \Gamma$ Premise $\square \Theta$ $\Theta; \Gamma \vdash x: P \dashv \Theta$ By Avar $\square \Theta$ Θ Assumption	L
• Case $\frac{\ \Theta\ ; \Gamma, x: P \vdash t: N}{\ \Theta\ ; \Gamma \vdash \lambda x: P.t: P \rightarrow}$	— Dλabs N
$\begin{array}{l} \Theta \vdash P \rightarrow N \ type^- \\ \Theta \vdash N \ type^- \\ P \rightarrow N \ ground \\ N \ ground \end{array}$	Assumption Inversion (Twfarrow) Assumption By definition of ground
Θ ctx	Assumption
$\Theta \vdash \Gamma \text{ env}$ $\Theta \vdash P \rightarrow N \text{ type}^{-}$ $\Theta \vdash P \text{ type}^{+}$ $P \rightarrow N \text{ ground}$ $\Theta \vdash \Gamma, x : P \text{ env}$	Assumption Assumption Inversion (Twfarrow) Assumption By definition of ground By Ewfvar
$\begin{array}{ccc} \Theta & \longrightarrow \Omega \\ & \Omega & \text{ctx} \end{array}$	Assumption Assumption
$\Theta; \Gamma, \mathbf{x} : \mathbf{P} \vdash \mathbf{t} : \mathbf{N} \dashv \Theta'$ $\blacksquare \Theta : \Theta; \Gamma \vdash \lambda \mathbf{x} : \mathbf{P} \cdot \mathbf{t} : \mathbf{P} \to \mathbf{N} \dashv \Theta'$	By i.h., for some context Θ' (term size decreases) " By A λ abs
• Case $\ \Theta\ , \alpha; \Gamma \vdash t : N$	

$$\begin{array}{c} \|\Theta\|, \alpha; \Gamma \vdash t: N \\ \hline \|\Theta\|; \Gamma \vdash \Lambda \alpha. t: \forall \alpha. N \end{array} D_{gen} \\ \|\Theta, \alpha\|; \Gamma \vdash t: N \\ \Theta \vdash \forall \alpha. N \ type^{-} \\ \Theta, \alpha \vdash N \ type^{-} \\ \hline \forall \alpha. N \ ground \\ N \ ground \\ N \ ground \\ \end{array} \begin{array}{c} D_{gen} \\ D_{$$

$$\begin{array}{cccc} \Theta & \operatorname{ctx} & \operatorname{Assumption} \\ \Theta, \alpha & \operatorname{ctx} & \operatorname{By} \operatorname{Cwfuvar} \\ \Theta \vdash \Gamma & \operatorname{env} & \operatorname{Assumption} \\ \Theta & \longrightarrow & \Omega & \operatorname{Assumption} \\ \Theta, \alpha & \longrightarrow & \Omega, \alpha & \operatorname{By} \operatorname{Cuvar} \\ \Omega & \operatorname{ctx} & \operatorname{Assumption} \\ \Omega, \alpha & \operatorname{ctx} & \operatorname{By} \operatorname{Cwfuvar} \\ \Theta, \alpha; \Gamma \vdash t: \operatorname{N} \dashv \Theta' & \operatorname{By} \operatorname{i.h.}, \text{ for some context } \Theta' & (\operatorname{term size decreases}) \\ \Theta' & \longrightarrow & \Omega, \alpha & '' \\ \Theta' & \ominus & \Theta'', \alpha & \operatorname{Inversion} & (\operatorname{Cuvar}) \operatorname{for some context} \Theta'' \\ \blacksquare & \Theta; \Gamma \vdash \Lambda \alpha. t: \forall \alpha. \operatorname{N} \dashv \Theta'' & \operatorname{By} \operatorname{Agen} \end{array}$$

• Case $\frac{\|\Theta\|\,;\Gamma\vdash t:N}{\|\Theta\|\,;\Gamma\vdash\{t\}\,;\downarrow N} \text{ Dthunk}$

	Θ ctx	Assumption
	$\Theta \vdash \Gamma$ env	Assumption
	$\Theta \longrightarrow \Omega$	Assumption
	Ω ctx	Assumption
	$\Theta; \Gamma \vdash t : \mathbb{N} \dashv \Theta'$	By i.h. (term size decreases)
ß	$\Theta' \longrightarrow \Omega$	//
R.	$\Theta;\Gamma \vdash \{t\}: {\downarrow} N \dashv \Theta'$	By Athunk

• Case $\frac{\|\Theta\|\,;\Gamma\vdash\nu:P}{\|\Theta\|\,;\Gamma\vdash \mathsf{return}\,\,\nu:\uparrow P} \text{ Dreturn}$

Symmetric to Dthunk case.

• Case
$$\frac{\|\Theta\|; \Gamma \vdash \nu : \downarrow M \quad \|\Theta\|; \Gamma \vdash s : M \gg \uparrow Q \quad \|\Theta\| \vdash \uparrow P \leq^{-} \uparrow Q \quad \|\Theta\|; \Gamma, x : P \vdash t : N}{\|\Theta\|; \Gamma \vdash \text{let } x : P = \nu(s); t : N}$$
 Dambiguouslet
$$\begin{array}{c} \Theta \text{ ctx} & \text{Assumption} \\ \Theta \vdash \Gamma \text{ env} & \text{Assumption} \\ \Theta \longrightarrow \Omega & \text{Assumption} \\ \Omega \text{ ctx} & \text{Assumption} \end{array}$$

Subderivation

Apply the induction hypothesis to give a context Θ' such that:

 $\|\Theta\|$; $\Gamma \vdash \nu$: $\downarrow M$

 $\Theta; \Gamma \vdash \nu : \downarrow M \dashv \Theta'$ By i.h. (term size decreases)

$$\Theta' \longrightarrow \Omega$$

Applying well-formedness:

$\Theta \longrightarrow \Theta'$	By Lemma K.5 (Algorithmic typing is w.f)
Θ' ctx	11
$\Theta' \vdash {\downarrow}M$ type ⁺	11
$\downarrow M$ ground	11

//

Rework the second premise so we can apply the induction hypothesis:

$\left\ \Theta ight\ ; \Gamma dash s \colon \mathcal{M} \gg {\uparrow} Q$	Premise
$\ \Theta\ $; $\Gamma \vdash s$: $[\Omega]M \gg \uparrow Q$	By Lemma D.5 (Applying a context to a ground type)
$\ \Theta'\ $; $\Gamma \vdash s$: $[\Omega]M \gg \uparrow Q$	By Lemma D.2 (Equality of declarative contexts)

Next show the antecedents of the second premise's induction hypothesis:

Θ' ctx	Above
$\Theta \Longrightarrow \Theta'$	By Lemma C.1 (\implies subsumes \longrightarrow)
$\Theta' \vdash \Gamma$ env	By Lemma C.6 (Weak context extension preserves w.f. envs)
$\Theta' \longrightarrow \Omega$	Above
Ω ctx	Above
$\Theta' \vdash M$ type ⁻	Inversion (Twfshift↓)
$[\Theta']M=M$	By Lemma D.5 (Applying a context to a ground type)

Apply the induction hypothesis to give a contexts Θ'' , Ω' and a type Q' such that:

$\Theta'; \Gamma \vdash s \colon M \gg {\uparrow} Q' \dashv \Theta''$	By i.h. (term size decreases)
$\Omega \Longrightarrow \Omega'$	//
$\Theta'' \longrightarrow \Omega'$	//
$\ \Theta'\ \vdash [\Omega'] \uparrow Q' \cong^- \uparrow Q$	11
$[\Theta'']\uparrow Q'=\uparrow Q'$	11
Ω' ctx	//

Applying well-formedness:

$\Theta' \Longrightarrow \Theta''$	By Lemma K.5 (Algorithmic typing is w.f)
Θ'' ctx	11
$\Theta'' \vdash \uparrow Q' \ type^-$	11
$[\Theta'']{\uparrow}Q'={\uparrow}Q'$	"

Now rework the third premise to match algorithmic rule. First show the third premise of the declarative rule:

$\ \Theta\ \vdash \uparrow P \leq^{-} \uparrow Q$	Premise
$\Theta \Longrightarrow \Theta''$	By Lemma C.4 (Weak context extension is transitive)
$\ \Theta''\ Dash \uparrow P \leq^{-} \uparrow Q$	By Lemma C.3 (Equality of declarative contexts (weak))
$\ \Theta''\ \vdash [\Omega'] \uparrow Q' \cong^- \uparrow Q$	By Lemma C.3 (Equality of declarative contexts (weak))
$\ \Theta''\ \vdash \uparrow P \leq^{-} \uparrow [\Omega'] Q'$	By Lemma B.7 (Declarative subtyping is transitive)
$\ \Theta''\ \vdash P\leq^+[\Omega']Q'$	Inversion (\leq^{\pm} Dshift \uparrow)

Show the antecedents of completeness:

Θ'' ctx	Above
$\Theta'' \longrightarrow \Omega'$	Above
Ω' ctx	Above
$\Theta \vdash P \ type^+$	P annotation
$\Theta'' \vdash P \ type^+$	By Lemma C.5 (Weak context extension preserves well-formedness)
$\Theta'' \vdash \uparrow Q' \ type^-$	Above
$\Theta'' \vdash Q' \ type^+$	Inversion (Twfshift [†])
P ground	P annotation
$[\Theta'']\uparrow Q'=\uparrow Q'$	Above
$[\Theta'']Q' = Q'$	By definition of [–]–

Applying Theorem G.5 (Completeness of algorithmic subtyping), we have the following for some context Θ'' :

 $\begin{array}{ll} \Theta'' \vdash P \leq^+ Q' \dashv \Theta''' & \qquad & \text{By Theorem G.5 (Completeness of algorithmic subtyping)} \\ \Theta''' \longrightarrow \Omega' & \qquad & '' \end{array}$

Now appeal to the well-formedness of the algorithmic subtyping judgment:

$\Theta^{\prime\prime\prime}$ ctx	By Lemma K.5 (Algorithmic typing is w.f)
$\Theta^{\prime\prime} \longrightarrow \Theta^{\prime\prime\prime}$	11
$[\Theta''']Q'$ ground	11

Now show the fourth premise of the declarative rule:

$\ \Theta''\ \vdash \uparrow P \leq^{-} \uparrow [\Omega'] Q'$	Above
$\ \Theta'''\ \vdash \uparrow P \leq^{-} \uparrow [\Omega'] Q'$	By Lemma D.2 (Equality of declarative contexts)
$\ \Theta'''\ \vdash [\Omega']Q' \leq^+ P$	Inversion (\leq^{\pm} Dshift \uparrow)
$\left\ \Theta^{\prime\prime\prime}\right\ \vdash [\Omega^{\prime}][\Theta^{\prime\prime\prime}]Q^{\prime} \leq^+ [\Omega^{\prime}]Q^{\prime}$	By Lemma F.4 (\longrightarrow leads to isomorphic types)
$\ \Theta'''\ \vdash [\Omega'][\Theta''']Q' \leq^+ P$	By Lemma B.7 (Declarative subtyping is transitive)

Show the antecedents of completeness:

$\begin{array}{c} \Theta''' \ \operatorname{ctx} \\ \Theta''' \ \longrightarrow \Omega' \\ \Omega' \ \operatorname{ctx} \end{array}$	Above Above Above
$\Theta''' \vdash P \text{ type}^+$	By Lemma D.4 (Context extension preserves w.f.)
$\Theta''' \vdash Q' \text{ type}^+$	By Lemma D.4 (Context extension preserves w.f.)
$\Theta''' \vdash [\Theta''']Q' \text{ type}^+$	By Lemma E.1 (Applying context to the type preserves w.f.)
$[\Theta''']Q'$ ground	Above
$[\Theta''']P = P$	By Lemma D.5 (Applying a context to a ground type)

Applying Theorem G.5 (Completeness of algorithmic subtyping), we have the following for some context Θ'' :

$\Theta^{\prime\prime\prime} \vdash [\Theta^{\prime\prime\prime}] \mathrm{Q}^{\prime} \leq^+ \mathrm{P} \dashv \Theta^{(4)}$	By Theorem G.5 (Completeness of algorithmic subtyping)
$\Theta^{(4)} \longrightarrow \Omega'$	11

Now appeal to the well-formedness of the algorithmic subtyping judgment:

$\Theta^{(4)}$ ctx	By Lemma K.5 (Algorithmic typing is w.f)
$\Theta^{\prime\prime\prime} \longrightarrow \Theta^{(4)}$	11

Let the restricted context $\Theta^{(5)} = \Theta^{(4)} \upharpoonright \Theta$:

$\begin{array}{c} \Theta \longrightarrow \Theta^{(5)} \\ \Theta^{(5)} \end{array} ctx \end{array}$	By Lemma K.1 (Well-formedness of restricted contexts)
$\begin{array}{c} \Omega \ \mathrm{ctx} \\ \Omega' \ \mathrm{ctx} \\ \Omega \Longrightarrow \Omega' \\ \Omega \longrightarrow \Omega' \restriction \Omega \end{array}$	Above Above Above By Lemma K.1 (Well-formedness of restricted contexts)
$\begin{array}{ccc} \Omega' \upharpoonright \Omega & \longrightarrow \Omega \\ \Theta^{(4)} & \longrightarrow \Omega' \\ \Theta^{(4)} \upharpoonright \Omega & \longrightarrow \Omega \\ \Theta & \longrightarrow \Omega \\ \Theta^{(4)} \upharpoonright \Theta & \longrightarrow \Omega \\ \Theta^{(5)} & \longrightarrow \Omega \end{array}$	By Lemma O.2 (Reversing context extension from a complete context)AboveBy Lemma O.3 (Pulling back restricted contexts)AboveBy Lemma N.2 (Identical restricted contexts)Substituting in definition of Θ ⁽⁵⁾

Rework the final premise to match the algorithmic rule:

$\ \Theta\ $; Γ , \mathbf{x} : $P \vdash t$: N	Premise
$\left\ \Theta^{(5)}\right\ ; \Gamma, \mathbf{x}: P \vdash t: N$	By Lemma D.2 (Equality of declarative contexts)

Show the antecedents of the final premise's induction hypothesis:

$\Theta \longrightarrow \Theta^{(5)}$	Above
$\Theta \vdash N \text{ type}^-$	Assumption
$\Theta^{(5)} \vdash N \text{ type}^-$	By Lemma D.4 (Context extension preserves w.f.)
N ground	Assumption
$\Theta^{(5)}$ ctx	As shown above
$\Theta^{(5)} \longrightarrow \Omega$	Above
Ωctx	Assumption
$\Theta \vdash \Gamma$ env	Assumption
$\Theta \Longrightarrow \Theta^{(5)}$	By Lemma C.1 (\Longrightarrow subsumes \longrightarrow)
$\Theta^{(5)} \vdash \Gamma \operatorname{env}$	By Lemma C.6 (Weak context extension preserves w.f. envs)
$\Theta \vdash P \ type^+$	P an annotation
$\Theta^{(5)} \vdash P \ type^+$	By Lemma D.4 (Context extension preserves w.f.)
P ground	P an annotation
$\Theta^{(5)} \vdash \Gamma, \mathfrak{x} : P \operatorname{env}$	By Ewfvar

Apply the induction hypothesis, to give a context $\Theta^{(6)}$, such that:

6	$\Theta^{(6)} \longrightarrow \Omega$	By i.h. (term size decreases)
	$\Theta^{(5)}; \Gamma, \mathbf{x} : P \vdash t : N \dashv \Theta^{(6)}$	11
B	$\Theta; \Gamma \vdash let \ x : P = v(s); t : N \dashv \Theta^{(6)}$	By Aambiguouslet

• Case

$$\begin{array}{c|c} \|\Theta\|\,; \Gamma \vdash \nu: {\downarrow} M & \|\Theta\|\,; \Gamma \vdash s: M \gg {\uparrow} Q \\ \hline \|\Theta\|\,; \Gamma, x: Q \vdash t: N & \forall P. \, if \, \|\Theta\|\,; \Gamma \vdash s: M \gg {\uparrow} P \, then \, \|\Theta\| \, \vdash \, Q \, \cong^+ \, P \\ \hline \|\Theta\|\,; \Gamma \vdash {\sf let} \, x = \nu(s); t: N \end{array} Dunambiguouslet$$

Θ ctx	Assumption
$\Theta \vdash \Gamma$ env	Assumption
$\Theta \longrightarrow \Omega$	Assumption
Ω ctx	Assumption
$\ \Theta\ $; $\Gamma \vdash u$: $\downarrow \mathcal{M}$	Subderivation

Apply the induction hypothesis to give a context Θ' such that:

(1)	$\Theta; \Gamma \vdash v : \downarrow \mathcal{M} \dashv \Theta'$	By i.h. (term size decreases)
	$\Theta' \longrightarrow \Omega$	"

Applying well-formedness:

$\Theta \longrightarrow \Theta'$	By Lemma K.5 (Algorithmic typing is w.f)
Θ' ctx	"
$\Theta' \vdash \downarrow M \text{ type}^+$	11
$\downarrow M$ ground	"

Rework the second premise so we can apply the induction hypothesis:

$\ \Theta\ $; $\Gamma \vdash s$: $\mathcal{M} \gg \uparrow Q$	Premise
$\left\ \Theta ight\ ;\Gammadash s\colon [\Omega]\mathcal{M}\gg {\uparrow} Q$	By Lemma D.5 (Applying a context to a ground type)
$\left\ \Theta' ight\ ;\Gammadash s\colon [\Omega]\mathcal{M}\gg{\uparrow}Q$	By Lemma D.2 (Equality of declarative contexts)

Next show the antecedents of the second premise's induction hypothesis:

Θ' ctx	Above
$\Theta \Longrightarrow \Theta'$	By Lemma C.1 (\Longrightarrow subsumes \longrightarrow)
$\Theta' \vdash \Gamma$ env	By Lemma C.6 (Weak context extension preserves w.f. envs)
$\Theta' \longrightarrow \Omega$	Above
Ωctx	Above
$\Theta' \vdash M$ type ⁻	Inversion (Twfshift↓)
$[\Theta']M=M$	By Lemma D.5 (Applying a context to a ground type)

Apply the induction hypothesis to give a contexts Θ'' , Ω' and a type Q' such that:

(2)	$\Theta'; \Gamma \vdash s \colon \mathcal{M} \gg \uparrow \mathrm{Q}' \dashv \Theta''$	By i.h. (term size decreases)
	$\Omega \Longrightarrow \Omega'$	11
	$\Theta'' \longrightarrow \Omega'$	//
(3)	$\ \Theta'\ \vdash [\Omega'] \uparrow Q' \cong^{-} \uparrow Q$	11
	$[\Theta''] \uparrow Q' = \uparrow Q'$	11
	Ω' ctx	11

Applying well-formedness:

$$\begin{array}{l} \Theta' \Longrightarrow \Theta'' \\ FEV(\uparrow Q') \subseteq FEV(M) \cup (FEV(\Theta'') \setminus FEV(\Theta')) \end{array}$$

By Lemma K.5 (Algorithmic typing is w.f)

Θ'' ctx	//
$\Theta'' \vdash \uparrow Q' \ type^-$	//
$[\Theta'']\uparrow Q'=\uparrow Q'$	//

From these conclusions we can deduce:

$\operatorname{FEV}(Q') \subseteq \operatorname{FEV}(\mathcal{M}) \cup (\operatorname{FEV}(\Theta'') \setminus \operatorname{FEV}(\Theta'))$	By definition of FEV and above
$\operatorname{FEV}(M) = \emptyset$	Since M ground
$FEV(Q^{\prime})\subseteqFEV(\Theta^{\prime\prime})\setminusFEV(\Theta^{\prime})$	Substituting above equations
$FEV(\Theta') \subseteq FEV(\Theta'')$	By Lemma O.1 (Weak context extension maintains variables
$\text{FEV}(Q^{\prime})\cap\text{FEV}(\Theta^{\prime})=\emptyset$	By definition of \subseteq

Next prove by contradiction that we have Q' ground from the induction hypothesis. Assume $FEV(Q') \neq \emptyset$. Then:

(4)	$\hat{\alpha} \in FEV(Q')$	Necessarily true for some $\hat{\alpha}$, otherwise
		Q' would not be ground

Let $R = [\Omega']\hat{\alpha}$ and define Ω'' as the complete context obtained by taking Ω' and substituting the $\hat{\alpha} = R$ context item with $\hat{\alpha} = \downarrow \uparrow R$. Now apply soundness to the algorithmic judgment but using Ω'' as the complete context:

Θ' ctx	Above
$\Theta' \vdash \Gamma$ env	Above
$\Theta'' \longrightarrow \Omega''$	Since (a) $\Theta'' \longrightarrow \Omega'$ and $\hat{\alpha} \in FEV(Q')$ implies
	(b) $\hat{\alpha}$ is unsolved in Θ''
$\Theta'; \Gamma \vdash \mathfrak{s} \colon \mathcal{M} \gg \uparrow \mathcal{Q}' \dashv \Theta''$	Above
$\Omega'_{\rm I} \vdash {\sf R} \ {\rm type^+}$	Inversion (Cwfsolvedguess), for some prefix Ω'_{I} of Ω'
	(this is also a prefix of Ω'' by definition of Ω'')
R ground	//
$\Omega'_{\rm L} \vdash \downarrow \uparrow R \text{ type}^+$	By Twfshift↑ and Twfshift↓
↓↑R ground	By definition of ground
Ω'' ctx	By Ω' ctx and above two statements
$\Theta' \vdash M$ type ⁻	Above
$[\Theta']M = M$	Above
$\ \Theta'\ $; $\Gamma \vdash \mathfrak{s} \colon [\Omega'']M \gg Q''$	By Theorem N.3 (Soundness of algorithmic typing)
	(term size decreases)
$\ \Theta'\ \vdash Q'' \cong^+ [\Omega''] \uparrow Q'$	//
(5) $\ \Theta\ \vdash Q'' \cong^+ [\Omega''] \uparrow Q'$	By Lemma D.2 (Equality of declarative contexts)
$\Omega \Longrightarrow \Omega'$	Above
$\Omega \Longrightarrow \Omega''$	Replacing the instance of Wcsolveguess
$\ \Theta\ $; $\Gamma \vdash s$: $[\Omega'']M \gg Q''$	By Lemma C.3 (Equality of declarative contexts (weak))
$\ \Theta\ $; $\Gamma \vdash s$: $M \gg Q''$	By Lemma D.5 (Applying a context to a ground type)
Now make use of the final premise:	
$\ \Theta\ \vdash Q\cong^+Q''$	Instantiating final premise with $P = Q''$
$\ \Theta\ \vdash Q \cong^+ [\Omega''] \uparrow Q'$	Applying Lemma B.7 (Declarative subtyping is transitive) to above and (5)
$\ \Theta\ \vdash [\Omega'] {\uparrow} Q' \cong^- {\uparrow} Q$	Applying Lemma D.2 (Equality of declarative contexts)

to (3)

$$\begin{split} \|\Theta\| &\vdash [\Omega']Q' \cong^+ Q & \text{Inversion } (\leq^{\pm} \mathsf{Dshift}\uparrow) \\ \|\Theta\| &\vdash [\Omega']Q' \cong^+ [\Omega'']Q' & \text{By Lemma B.7 (Declarative subtyping is transitive)} \end{split}$$

Must have the same number of shifts on both sides

of the declarative subtyping judgment

Since $\hat{\alpha} \in FEV(Q')$ by (4)

Since Q' ground

However:

 $\|\Theta\| \vdash R \not\cong^+ \uparrow \downarrow R$ $\|\Theta\| \vdash [\Omega']Q' \not\cong^+ [\Omega'']Q'$

This is a contradiction, hence Q' must be ground:

(6) $FEV(Q') = \emptyset$

Next, restrict the output context of the spine judgment:

(7)	Let $\Theta''' = \Theta'' \upharpoonright \Theta$.	
	Θctx	Above
	Θ'' ctx	Above
	$\Theta \Longrightarrow \Theta''$	Above
	$\Theta \longrightarrow \Theta'''$	By Lemma K.1 (Well-formedness of restricted contexts)
	$\Theta^{\prime\prime\prime}$ ctx	"
	Ωctx	Above
	Ω' ctx	Above
	$\Omega \Longrightarrow \Omega'$	Above
	$\Omega \longrightarrow \Omega' \restriction \Omega$	By Lemma K.1 (Well-formedness of restricted contexts)
	$\Omega'{\upharpoonright}\Omega \longrightarrow \Omega$	By Lemma O.2 (Reversing context extension from a complet
	$\Theta'' \longrightarrow \Omega'$	Above
	$\Theta'' \restriction \Omega \longrightarrow \Omega$	By Lemma O.3 (Pulling back restricted contexts)
	$\Theta \longrightarrow \Omega$	Above
	$\Theta'' {\upharpoonright} \Theta \longrightarrow \Omega$	By Lemma N.2 (Identical restricted contexts)
	$\Theta^{\prime\prime\prime} \longrightarrow \Omega$	Substituting in definition of $\Theta^{\prime\prime\prime}$

Rework the third premise to match the algorithmic judgment:

$\ \Theta\ $; Γ , x : Q \vdash t : N	Premise
$\ \Theta\ \vdash [\Omega'] \uparrow Q' \cong^- \uparrow Q$	Above
$\ \Theta\ $; $\Gamma, x : [\Omega']Q' \vdash t : N$	By Lemma J.1 (Isomorphic environments type the same tern
$\ \Theta\ $; Γ , x : Q' \vdash t : N	By Lemma D.5 (Applying a context to a ground type)
$\left\ \Theta^{\prime\prime\prime}\right\ ; F, x: Q^{\prime} \vdash t: N$	By Lemma D.2 (Equality of declarative contexts)

Next show the antecedents of the induction hypothesis:

$\Theta^{\prime\prime\prime}$ ctx	Above
$\Theta \vdash \Gamma$ env	Above
$\Theta''' \vdash \Gamma env$	By Lemma C.6 (Weak context extension preserves w.f. envs)
$\Theta'' \vdash Q'$ type ⁺	Inversion (Twfshift↑)
Q′ ground	Above
$\Theta''' \vdash Q' \ type^+$	By definition of restricted context $\Theta^{\prime\prime\prime}$ and since Q^{\prime} ground

Applying the induction hypothesis, we have for a context $\Theta^{(4)}$:

(8)	$\Theta'''; \Gamma, \mathrm{x} : \mathrm{Q'} \vdash \mathrm{t} : \mathrm{N} \dashv \Theta^{(4)}$	By i.h. (term size decreases)
6	$\Theta^{(4)} \longrightarrow \Omega$	11
6	$\Theta; \Gamma \vdash let \ \mathfrak{x} = \mathfrak{v}(s); \mathfrak{t} : N \dashv \Theta^{(4)}$	Applying Aunambiguouslet to (1), (2), (6), (7), and (8)

• Case

 $\overline{\|\boldsymbol{\Theta}\|\,;\boldsymbol{\Gamma}\vdash\boldsymbol{\varepsilon}:N\gg N}\ \mathsf{Dspinenil}$

The output context will be Θ , the complete context will be Ω , and the output type will be M.

6	$\Theta;\Gamma\vdash \epsilon:N\gg N\dashv \Theta$	By Aspinenil
6	$\Omega \Longrightarrow \Omega$	By Lemma C.2 (Weak context extension is reflexive)
6	$\Theta \longrightarrow \Omega$	Assumption
	$\ \Theta\ \vdash [\Omega][\Theta] \mathbb{N} \cong^{-} [\Theta] \mathbb{N}$	By Lemma F.4 (\longrightarrow leads to isomorphic types)
3	$[\Theta]N = N$	Assumption
6	$\ \Theta\ \vdash [\Omega] N \cong^- N$	Substituting in above equation
6	$[\Theta]N = N$	Assumption
ß	Ω ctx	Assumption

• Case
$$\frac{\|\Theta\|\,;\Gamma\vdash\nu:P\quad \|\Theta\|\vdash P\leq^+[\Omega]Q\quad \|\Theta\|\,;\Gamma\vdash s:[\Omega]N\gg M}{\|\Theta\|\,;\Gamma\vdash\nu,s:[\Omega](Q\rightarrow N)\gg M} \text{ Dspinecons}$$

Θ ctx	Assumption
$\Theta \vdash \Gamma$ env	Assumption
$\Theta \longrightarrow \Omega$	Assumption
Ω ctx	Assumption

By the induction hypothesis for the first premise, there exists a context Θ' , such that:

$\Theta; \Gamma \vdash v : P \dashv \Theta'$	By i.h. (term size decreases)
$\Theta' \longrightarrow \Omega$	//

Apply well-formedness to this algorithmic judgment:

 $\Theta \longrightarrow \Theta'$ By Lemma K.5 (Algorithmic typing is w.f)

Θ' ctx	//
$\Theta \vdash P \ type^+$	"
P ground	//

Now use completeness of subtyping:

$\begin{array}{c} \Theta' \ ctx \\ \Theta' \ \longrightarrow \Omega \\ \Omega \ ctx \end{array}$	Above Above Above
$\begin{split} \ \Theta\ &\vdash P \leq^+ [\Omega] Q \\ \ \Theta'\ &\vdash P \leq^+ [\Omega] Q \\ \ \Theta'\ &\vdash P \leq^+ [\Omega] [\Theta'] Q \end{split}$	Subderivation By Lemma D.2 (Equality of declarative contexts) By Lemma F.4 (\longrightarrow leads to isomorphic types)
$\Theta' \vdash P \text{ type}^+$ $\Theta \vdash Q \rightarrow N \text{ type}^-$ $\Theta \vdash Q \text{ type}^+$ $\Theta' \vdash [\Theta']Q \text{ type}^+$ P ground $[\Theta'][\Theta']Q = [\Theta']Q$	By Lemma D.4 (Context extension preserves w.f.) Assumption By Twfarrow By Lemma D.4 (Context extension preserves w.f.) By Lemma E.1 (Applying context to the type preserves w.f.) Above By Lemma D.6 (Context application is idempotent)
$egin{array}{lll} \Theta'dash P\leq^+[\Theta']Q\dashv\Theta''\ \Theta''\longrightarrow\Omega \end{array}$	By Theorem G.5 (Completeness of algorithmic subtyping)

Applying well-formedness:

Θ'' ctx	By Lemma E.2 (Algorithmic subtyping is w.f.)
$\Theta' \longrightarrow \Theta''$	11
$[\Theta''][\Theta']Q$ ground	11

Next rework the third premise to match the algorithmic rule:

$\ \Theta''\ $; $\Gamma \vdash s$: $[\Omega]$ N \gg M	By Lemma D.2 (Equality of declarative contexts)
$\ \Theta''\ \vdash [\Omega][\Theta'']N \cong^{-} [\Omega]N$	By Lemma F.4 (\longrightarrow leads to isomorphic types)
$\left\ \Theta^{\prime \prime} \right\ ; \Gamma dash s \colon [\Omega][\Theta^{\prime \prime}] N \gg M^{\prime}$	By Lemma J.1 (Isomorphic environments type the same terms)
$\ \Theta''\ \vdash M\cong^-M'$	//

Now show the antecedents of the third premise's induction hypothesis:

Θ'' ctx	Above
$\Theta \vdash \Gamma$ env	Assumption
$\Theta'' \vdash \Gamma env$	By Lemma C.6 (Weak context extension preserves w.f. envs)
$\Theta \vdash P \rightarrow N \ type^-$	Assumption
$\Theta \vdash N \ type^-$	By Twfarrow
$ \begin{array}{c} \Theta \longrightarrow \Theta'' \\ \Theta'' \vdash N \text{ type}^- \\ \Theta'' \vdash [\Theta''] N \text{ type}^- \end{array} $	By Lemma D.3 (Context extension is transitive) By Lemma D.4 (Context extension preserves w.f.) By Lemma E.1 (Applying context to the type preserves w.f.)
$[\Theta''][\Theta'']N=[\Theta'']N$	By Lemma D.6 (Context application is idempotent)

$\Theta'' \longrightarrow \Omega$	By i.h. (term size decreases)
Ω ctx	Assumption

Now apply the induction hypothesis to this third premise. This gives the following for some contexts Θ''' , Ω' and type M'':

 $\Theta''; \Gamma \vdash s : [\Theta''] N \gg M'' \dashv \Theta'''$ By i.h. (term size decreases) // $\Omega \Longrightarrow \Omega'$ 5 // $\Theta''' \longrightarrow \Omega'$ 5 // $\|\Theta''\| \vdash [\Omega']M'' \cong^{-} M'$ // $[\Theta^{\prime\prime\prime}]M^{\prime\prime}=M^{\prime\prime}$ 67 // Ω' ctx ß $\|\Theta'\| \vdash [\Omega]M'' \cong^{-} M$ By Lemma B.7 (Declarative subtyping is transitive) $\|\Theta\| \vdash [\Omega]M'' \cong^{-} M$ By Lemma D.2 (Equality of declarative contexts) ß

Finally, apply the algorithmic judgment:

$$\label{eq:second} {\bf \mathbb{G}}; \Gamma \vdash \nu, s \colon P \to N \gg M'' \dashv \Theta'' \quad \text{By Aspinecons}$$

• Case $\frac{\|\Theta\| \vdash P \, type^+ \qquad \|\Theta\| \, ; \Gamma \vdash s : [P/\alpha]([\Omega]N) \gg M}{\|\Theta\| \, ; \Gamma \vdash s : [\Omega](\forall \alpha. N) \gg M} \text{ Dspinetypeabs}$

Take cases on whether $\alpha \in FUV(N)$

- Case
$$\alpha \notin FUV(N)$$
:

$[P/\alpha]([\Omega]N) = [\Omega]N$	By $\alpha \notin FUV(N)$
$\ \Theta\ $; $\Gamma \vdash s$: [Ω] N \gg M	By equality
$\Theta \vdash \forall \alpha. N \text{ type}^-$ $\Theta, \alpha \vdash N \text{ type}^-$ $\Theta \vdash N \text{ type}^-$	Assumption By Twfforall By $\alpha \notin$ FUV(N) and Lemma K.2 (Type well-formed with type variable removed)
$\begin{split} [\Theta](\forall \alpha. N) &= \forall \alpha. N\\ [\Theta]N &= N \end{split}$	Assumption By definition of [–]–
Θ ctx $\Theta \vdash \Gamma$ env	Assumption Assumption
$\Theta \longrightarrow \Omega$	Assumption
Ω ctx	Assumption

By the induction hypothesis we have contexts Θ' , Ω' and type M', such that:

RF I	$\Omega \Longrightarrow \Omega'$	By i.h. (Term size stays the same and the number of
		prenex universal quantifiers decreases. Since applying
		the context only replaces positive types by positive
		types, it cannot change the number of prenex
		universal quantifiers.)
I F	$\Theta' \longrightarrow \Omega'$	//

B	$\ \Theta\ \vdash [\Omega]\mathcal{M}' \cong^{-} \mathcal{M}$	//
ß	$[\Theta']\mathcal{M}'=\mathcal{M}'$	//
RF.	Ω' ctx	//
	$\Theta; \Gamma \vdash s \colon N \gg M' \dashv \Theta'$	//

Applying the algorithmic judgment:

 $\blacksquare \qquad \Theta; \Gamma \vdash s : \forall \alpha. \ N \gg M' \dashv \Theta' \quad \text{By Aspinetypeabsnotin}$

– Case $\alpha \in FUV(N)$: First rework the premise to match the algorithmic rule:

$\ \Theta\ ; \Gamma \vdash s : [P/\alpha]([\Omega]N) \gg M$	Premise
$\ \Theta\ $; $\Gamma \vdash s$: $[[\Omega]P/\alpha]([\Omega]N) \gg M$	P ground and Lemma D.5 (Applying a context to a ground type)
$\ \Theta\ ; \Gamma \vdash s : [\Omega]([P/\alpha]N) \gg M$	By definition of [–]–

 $[\Omega, \hat{\alpha} = P](\Theta, \hat{\alpha}); [\Omega, \hat{\alpha} = P]\Gamma \vdash s \colon [\Omega, \hat{\alpha} = P]([\hat{\alpha}/\alpha]N) \gg M \quad \text{ For fresh } \hat{\alpha}$

Now show the antecedents of the induction hypothesis:

$\Theta \vdash \forall \alpha. N \text{ type}^-$	Assumption
$\Theta, \alpha \vdash N \text{ type}^-$	By Twfforall
$\Theta, \hat{\alpha} \vdash [\hat{\alpha}/\alpha] N \text{ type}^-$	By Lemma K.3 (Substitution preserves well-formedness of types)
$[\Theta](\forall \alpha. N) = \forall \alpha. N$	Assumption
$[\Theta]N = N$	By definition of [–]–
$[\hat{\alpha}/\alpha]([\Theta]N) = [\hat{\alpha}/\alpha]N$	By equality
$[\Theta]([\hat{lpha}/lpha]N)=[\hat{lpha}/lpha]N$	â fresh
$[\Theta, \hat{\alpha}]([\hat{\alpha}/\alpha]N) = [\hat{\alpha}/\alpha]N$	By definition of [–]–
Θ ctx	Assumption
$\Theta, \hat{\alpha} \operatorname{ctx}$	By Cwfunsolvedguess
$\Theta \Longrightarrow \Theta$	By Lemma C.2 (Weak context extension is reflexive)
$\Theta \Longrightarrow \Theta, \hat{lpha}$	By Wcnewunsolvedguess
$\Theta \vdash \Gamma$ env	Assumption
$\Theta, \hat{lpha} \vdash \Gamma$ env	By $\Theta \implies \Theta, \hat{\alpha}$ and
	Lemma C.6 (Weak context extension preserves w.f. envs)
$\Theta \longrightarrow \Omega$	Assumption
$\Theta, \hat{\alpha} \longrightarrow \Omega, \hat{\alpha} = P$	By Csolveguess
Ω ctx	Assumption
P ground	P declarative type
$\ \Theta\ \vdash P \ type^+$	Premise
$\Omega \vdash P$ type ⁺	Since $\Theta \longrightarrow \Omega$, and context extension cannot add or remove universal variables
$\Omega, \hat{lpha} = P \ \operatorname{ctx}$	By Cwfsolvedguess

Applying the induction hypothesis, we have contexts Θ' , Ω' and a type M', such that:

	$\Omega, \hat{\alpha} = P \Longrightarrow \Omega'$	By i.h. (Term size stays the same and the number of prenex universal quantifiers decreases. Since applying the context only replaces positive types by positive types, it cannot change the number of prenex universal quantifiers.)
3	$\Theta' \longrightarrow \Omega'$	//
1 37	$\ \Theta\ \vdash [\Omega']M' \cong^{-} M$	11
ß	$[\Theta']{\mathcal M}'={\mathcal M}'$	11
I\$F	Ω' ctx	11
	$\Theta, \hat{\alpha}; \Gamma \vdash s \colon [\hat{\alpha} / \alpha] N \gg M' \dashv \Theta'$	11
	$\Omega, \hat{\alpha} = P \implies \Omega'$	Above
	$\Omega \Longrightarrow \Omega$	By Lemma C.2 (Weak context extension is reflexive)
	$\Omega \Longrightarrow \Omega, \hat{\alpha} = P$	By Wcnewsolvedguess
R\$	$\Omega \Longrightarrow \Omega'$	By Lemma C.4 (Weak context extension is transitive)

Finally, applying the algorithmic judgment: