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Definitions

Values vi=x|{t}
Computations ta=Ax:P.t|Ac.t|returnv |
let x =v(s);t|letx: P =v(s);t
Argument lists st=¢€|ws
Positive types P:u=o] [N
Negative types N:=P—->N|Va.N|TP
Typing contexts O:=-10,x
Typing environments MNi=-|Lx:P

Figure 1: Implicit Polarized F

O - A type™ | In the context ©, A is a well-formed positive/negative type

xe® ©  Ntype™ ) O, x - Ntype™
— = Twfuvar — 7 Twfshift] 7P Twfforall
O F otype™ O F [Ntype™® O F Vo N type
O F Ptype™ O F N type™ OF Ptype™
P 7typ Twfarrow 7typ7 TwfshiftT
©F P — Ntype © - TP type

Figure 2: Well-formedness of declarative types



O;T" F e : A| The term e synthesizes the type A

‘ OTFs:N>M ‘ When passed to a head of type N, the argument list s synthesizes

the type M

x:Perl O;'-t:N

——— Dvar ————— Dthunk

O;l'-x:P ;I {t}: [N
O;Lx:PFHt:N 6, t: N

DAabs Dgen
O;TFAx:P.t:P— N O;TFAx.t:Va. N
O;T'Fv:P
Dreturn

O;T F returnv: TP

O;l'Fv: M O,l'Fs:M>TQ OFTQ < TP O;Nx:PFt:N
O;TFletx:P=v(s);t: N

Dambiguouslet

O;TFv: M
OTEs:M>TQ O;Lx:QFt:N VYP.if @;Ts:M > TPthen®  Q =" P
O;THletx =v(s);t: N

Dunambiguouslet

O;lT+v:P OFP<TQ OTFs:N>M
Dspinenil Dspinecons

O;T+e:N>N O;lrFv,;s:(Q—=N)>M

O+ Ptype™ O;TFs:[P/dIN>M
O;TFs: (Va.N) > M

Dspinetypeabs

Figure 3: Declarative type system

© F A <* B/ In the context ©, A is a positive/negative declarative subtype of B

O F atype” n OFM< N OFN< M L O, aFN<™ M 4
————— <" Drefl - <*Dshift] — <*Dforallr
OF o< « OF NS M OFN< Va.M
OF Ptypet OF[P/xIN< M OFQ<TP OFN< M
ype [7/06] — <*Dforalll Q= — — <*Darrow
OFVa.N<™ M OFPN<T Q- M

OFQ<TP OFP<"Q
OFTP < TQ

<*Dshift]

Figure 4: Declarative subtyping



O A =" B/ In the context ©, the types A and B are isomorphic

OFA="BiffOFA<*Band @+ B <* A.

Figure 5: Isomorphic types

© F TI7 = T, | In the context O, the environments I'; and I, are isomorphic

OFN =T, ©FP="
—— Eisoempty ! 2 Q Eisovar

OF. .= OFT,x:P =T5,x:Q

Figure 6: Isomorphic environments

[G]A | Applying a context ©, as a substitution, to a type A

[JA=A O, ’]A = [O]A
[©, oA = [B]A [©,& =PIA = [O]([P/&RIA)
Figure 7: Applying a context to a type
Positive types Pu=...]®&
Contexts O:=...6,2|60,a="P

Figure 8: Additions to declarative types and contexts to form their algorithmic counterparts



OFA<*B-H0O’

In the context ©, A checks algorithmically as a subtype of B,
producing the context ©’

O1 - Ptype™ P ground

Or,x,0r F o< o401, O

0,8k [&/aJN <" M40, &=P] M=£YR.M

<% Arefl <*Ainst

O, &0rFP<"&-40r,&=P 0O
OFM< NHO' O'FN< [@IMH40”

<*Ashif
OF IN<* M0 = Ashiftl

0,0 N< MH0,a

—~ ; <*Aforalll = - <*Aforallr
OFVa.N< M0 OFN< Va.M -0
OFQ<'PHO O'FEIN< MH4O” |
— m <*Aarrow
OFP-N< Q—-M-H0O
Q<" P+H0O’ O'FOIMIP<TQ40”
Q= ©1P <" Q <*Ashift]

OFTP < TQHO”

Figure 9: Algorithmic subtyping

@’ | ©| @’ restricted to only contain existential variables which appear in ©

t e10=0"
- [empty 0, al0,0=0",«

[uvar

e'1e=0" e'1e=0" &[=Ql¢0

©,&a[=P]16,&[=Q]l =0",&[="P]

[guessin [guessnotin

®,&[=P|©=0"

Figure 10: Definition of context restriction



‘ O;l'+e:A-H0O’ ‘ The term e synthesizes the type A, producing the context @’

. . /] When passed to a head of type N, the argument list s synthesizes
‘@’ FFs:N>MH6 ‘ the type M, producing the context ©’

x:Pel

—Avar

O;TEx: P10
O;Nx:PFt:NH4O’ O,THt: N0,

- Alabs - Agen
O;'-Ax:P.t:P—>N-H0O O;TFAx.t:Voo.N 40O

O;THFt: N0’ O;TFv:P40O’

5 Athunk 7 Areturn
OTH{t}: INH0O O;T F returnv: TP 41O

eTr-v: M40 ©@5TFs:M>1Q-40" ©"+FP<'Q-H0”
@”r@e”"Q< P40 eP=e"re eP;nx:Prt:N40"®
O;THletx:P=v(s);t: N0

Aambiguouslet

OlrFv:  M-40’
@;THs:M>TQ40"” FEV(Q) =0 ©"=0"10 0" Ix:Qrt:N4e®W
O:TFletx =v(s);t: N 400

Aunambiguouslet

Aspinenil

O;TFe:N>N-H0O

O;TFv:P40O’ @'FP<T[O1Q 40" " Tks:[@"IN>M-H40"
O;TFv,s:Q—-N>M-10"

Aspinecons

O;TFs:N>M-H0’ o ¢ FUV(N)
O;TkFs: (Va.N) > M 40’

Aspinetypeabsnotin

O,&TFs:[&/aN>M-0O', &= P] « € FUV(N)
OTFs: (Va.N) > M40, &= Pl

Aspinetypeabsin

Figure 11: Algorithmic type system



© is a well-formed context
O ctx O ctx

—— Cwfempt Cwfuvar
- ctx Py O, x ctx 0, & ctx

Cwfunsolvedguess

Octx OF Ptypet P ground
O,& = Pctx

Cwfsolvedguess

Figure 12: Well-formedness of contexts

O - A type™ | In the context ©, A is a well-formed positive/negative type

& € EV(O)
— Twfguess

OF &type

Figure 13: Additional well-formedness rules for algorithmic types. EV(®) contains all the existential type
variables in O, independently of whether they are solved or unsolved.

© extends to ©’

© — 0 © — 0
N Cempty m Cuvar m Cunsolvedguess
e — 0 @ —0 |o|FP="Q

Csolveguess Csolvedguess

0,8 — O,&a="P 0,a=P — 0,a2a=0Q

Figure 14: Context extension

© = O’/ The context ©’ weakly extends the context ©’

Weempt ©=0 . 0= 0" | unsol d
: - Weempty 00— 0.« cuvar 0.8 — 0'.a cunsolvedguess
0 = 0 © =0 |9|+-P="Q

Wecsolveguess Wesolvedguess

0,8 = O,&a=P 0,a=P = 0,&2=Q

0 = O W ved 0 = O
@ :> @/,& cnewunsolvedguess @ :> @/,&: P

Wocnewsolvedguess

Figure 15: Weak context extension. We highlight the rules that are “new” compared with context extension.



O I I'env | The environment I is well-formed with respect to the context ©

OFTenv OF Ptype™ P ground
— Ewfempty Ewfvar
OF -env OFLx:Penv

Figure 16: Well-formedness of typing environments

|Alyq | The size of a type A, ignoring quantification

g = 1 [INJyo = Nlyo +1 [P = Nigg = Pl + Nlgo + 1
Blyo = 1 Vo Nl = NI [TPlyq = IPlyg + 1

Figure 17: The size of a type, ignoring universal quantification

NPQ(A) | The number of prenex quantifiers in a type A

NPQ(«) = 0 NPQ(/N) =0 NPQ(P — N) =0
NPQ(&) = 0 NPQ(Va. N) = 1+ NPQ(N) NPQ(TP) =0

Figure 18: The number of prenex quantifiers in a type A

|®|| | The declarative context corresponding to the algorithmic context ©

Il = 10, «f| = [[©]], & 1©,&[| =[1@] |©,& =P[| = O]

Figure 19: Producing a declarative context from an algorithmic context

System F types System F terms
[A = B] = L([A] — T[B]) [x] = return x
[Va.A] = [Vo. T[A] [Ax : A.e] = return {Ax : [A]. [e]}

[e1 e2] = let f[: Pl ={[es]};
let x[: Q] = {[ez2]};

let y[: R = f x;
returny

[Ax. e] = Aw. [e]

[e [Al] = [e]

Figure 20: An embedding of typeable terms in System F under a call-by-value evaluation order in Implicit
Polarized F.



Lemmas

A Weakening

Lemma A.1 (Pushing uvars right preserves w.f.). Let ©[On] abbreviate ©1,0n1,Or. Then if Olx, Om] +
A typet, ©[Opm, o] - A type™.

Lemma A.2 (Term well-formedness weakening). If © - A type™ then ©,0’ - A type®.

Lemma A.3 (Pushing uvars right in declarative judgment). Let ©[@n] abbreviate ©1,0n,Or. Then if
Olo, Om] F A <* B, O[Opm, ol F A <* B.

Lemma A.4 (Declarative subtyping weakening). If ® - A <* B then ©,0’ - A <* B.

B Declarative subtyping

Lemma B.1 (Declarative subtyping is reflexive). If © - A type® then ® - A <* A.

Lemma B.2 (Declarative substitution w.f.). If ©,0 F Ptype* and O, «,@®r + Atype*, then ©,0x F
[P/«]A typet.

Lemma B.3 (Declarative subtyping is stable under substitution). If ©,©g ~ P type™, then:

* IfOL, a0k F Qtype', Or,«,Or - Rtype™, and Or,x,Or - Q <* R, then ©,0r + [P/o]Q <*
[P/aR.

* IfOL,,Or - Ntype™, O, «,0Or - Mtype™, and O, x,Or F N <~ M, then Or,0g F [P/a]N <~
[P/x]M.

Lemma B.4 (Symmetry of positive declarative subtyping). If ® - P < Q then ® - Q <™ P by a derivation
of equal height.

B.1 Isomorphic types

Lemma B.5 (Mutual subtyping substitution). Given ®, & - P type" and ©, B - Q type™:

. If . If

1. ©,& - Rtype* 1. ©,% - Mtype~

2.0, F Stype* 2. ©,B F Ntype~

3. ©,&FR<* [P/BIS 3. 0,5k [P/BIN<" M

4.0, FS<"[Q/«R 4. ©,B F[Q/xJM <~ N

then: then:

1. VBi € B. B € FUV(S) = 1. VB € B.Pi € FUV(N) =
Fy.Pi=vy Fy.Pi=vy

2. Vo € &.; € FUV(R) = 2. Vo € &. oy € FUVM) =
Fy.Qi=vy H.Qi=vy
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Lemma B.6 (Isomorphic types are the same size). If:
1. O+ Atype™
2. O+ Btype"
3. 0FA="B
then |Aly, = [Bly,.

B.2 Transitivity

Lemma B.7 (Declarative subtyping is transitive). If © - A type*, © - Btype*, © - Ctypet, © - A <* B,
and ®+ B <* C, then® + A <* C.

C Weak context extension

Lemma C.1 (= subsumes —). If® — O/, then ® — ©'.

Lemma C.2 (Weak context extension is reflexive). For all contexts ©, @ —> ©O.

Lemma C.3 (Equality of declarative contexts (weak)). If @ —> @/, then ||O| = ||©®’|.

Lemma C.4 (Weak context extension is transitive). If ® —> 0’ and ®' — ©’, then @ — Q"

Lemma C.5 (Weak context extension preserves well-formedness). If © - Atypet and ® = ©’ then
@'+ Atype®.

Lemma C.6 (Weak context extension preserves w.f. envs). If ® = ©’ and © |- I"env, then @' I I"env.

Lemma C.7 (The extended context makes the type ground (weak)). If O ctx, ©' ctx, ® =—> ©’, and [©'][G]A
ground, then [©']A ground.

Lemma C.8 (Extending context preserves groundness (weak)). If O ctx, @' ctx, ® = @/, and [O]A ground,
then [©']A ground.

D Context extension

Lemma D.1 (Context extension is reflexive). For all contexts ©, ©@ — ©.

Lemma D.2 (Equality of declarative contexts). If ® — ©’, then ||O] = ||©’||.

Lemma D.3 (Context extension is transitive). If @ — O’ and ®' — ©”, then ® — @".
Lemma D.4 (Context extension preserves w.f.). If © - A type* and ® — ©’, then ©' - A type®.
Lemma D.5 (Applying a context to a ground type). If A ground, then [O]A = A.

Lemma D.6 (Context application is idempotent). If O ctx, then [G][O]A = [O]A.

Lemma D.7 (The extended context makes the type ground). If@ctx, ©®' ctx, ® — @', and [@'][O]A ground,
then [@']A ground.

Lemma D.8 (Extending context preserves groundness). If ©ctx, ©'ctx, @ — ©’, and [O]A ground, then
[O’]A ground.

11



E Well-formedness of subtyping

Lemma E.1 (Applying context to the type preserves w.f.). If @ ctx and © - A type*, then © - [O]A type*.

Lemma E.2 (Algorithmic subtyping is w.f.).
* IfOFP <t Q-0 Octx, P ground, and [O]Q = Q, then @’ ctx, ® — ©’, and [0’]Q ground.
* IfOFN <™ MO/, Octx, M ground, and [BIN = N, then ©'ctx, @ — ©’, and [©']IN ground.

F Soundness of subtyping

F.1 Lemmas for soundness

Lemma F.1 (Completing context preserves w.f.). If © - A type® and A ground then ||©|| - A type*.

Lemma F.2 (= leads to isomorphic types). If:
1. ©F Atype*
2.0 = 0
3. [@']A ground
4. Octx

5 ©'ctx

then ||©| - [@][O]A == [Q']A.

Lemma F.3 (= leads to isomorphic types (ground)). If:

1. ©F Atype*
. [B]A ground

2

3.0 =0
4. Octx

5

. O ctx

then |©|| F [B]A =* [0']A.

Lemma F.4 (— leads to isomorphic types). If:
1. ©F Atype*
2.0 — 0O
3. [@']A ground
4. Octx
5. ©'ctx

12



then ||©| - [@'][O]A =* [O']A.
Lemma F.5 (— leads to isomorphic types (ground)). If:
1. ©F Atype*
2. [O]A ground
3.6 — 0
4. Octx
5. ©'ctx
then ||©| + [OIA =F [©']A.

F.2 Statement

Theorem F.6 (Soundness of algorithmic subtyping). Given a well-formed algorithmic context © and a well-
formed complete context Q:

s fOFP<TQHO, 0" — Q, Pground, [B]Q =Q, ©F Ptypet, and © - Q type™,
then ||©] F P <' [Q]Q.

c FOFN< M-0,0 — Q, Mground, [©)N =N, © - Ntype, and © - M type,
then ||©] F [QIN <~ M.

G Completeness of subtyping

G.1 Lemmas for completeness
Lemma G.1 (Completion preserves w.f.). If @ ctx, © - A type®, and ® — Q, then ||©| - [Q]A type*.

Lemma G.2 (Extension solving guess). If O1,8,0r — Qr,& = Q,Qg and [Q(]©; + P =" Q, then
OL,&=P0Or — Qr,8=0Q,Qk.
Lemma G.3 (Context extension substitution size). If:

1. Octx

2. O+ Atype*

306 —Q

4. Qctx

then |[Q][O]A] QJA]

NQ = |[ NQ*
Lemma G.4 (Context extension ground substitution size). If:

1. Octx

2. OF Atype*
3. [O]A ground
4.0 — Q
5. Qctx

then |[G]A] [[QA]

NQ — NQ*

13



G.2 Statement
Theorem G.5 (Completeness of algorithmic subtyping). If ®ctx, ® — Q, and Q ctx, then:

s If|®] F P <" [Q]Q, ® I Ptype", © - Qtype™, P ground, and [B]Q = Q, then 30’ such that
OFP<T Q4O and® — Q.

s If|O| F[QIN <~ M, ©®© F Mtype , ©® - Ntype, M ground, and [O]N = N, then 30’ such that
OFN< MH4O' and ® — Q.

H Determinism of subtyping

Lemma H.1 (Algorithmic subtyping is deterministic).
* fFOFP<"QHO;and ®F P <" Q 4©J, then O] = 0O).
* fFOFN< M-H0;and®F N <~ M -0}, then ©] = 0).

I Decidability of subtyping

I.1 Lemmas for decidability
Lemma I.1 (Completed non-ground size bounded by ground size).
s IfOFP <t Q-0 Octx, P ground, and [O]Q = Q, then ©1Qlyo < IPlyo-
s IfOFN <™ M -0/, Octx, M ground, and [O]N = N, then \[@’]NINQ < Mlgor

1.2 Statement

Lemma 1.2 (Decidability of algorithmic subtyping). There exists a total order C on well-formed algorithmic
subtyping judgments such that for each derivation with subtyping judgment premises A; and conclusion B, each
A; compares less than B, i.e. Vi.A; C B.

J Isomorphic types
Lemma J.1 (Isomorphic environments type the same terms). If ® + I' = T, then:
e IfO;T'v:Pthen 3P’ suchthat ® - P =" P and ©;T' Fv: P’
e IfO;T't:N then IN’'such that ® - N =" N’ and ©;T"" - t: N’
* IfO,TFs:N>Mand ®+ N =" N/, then 3M’ such that @+ M =~ M’ and ©;T' s : N’ > M.

14



K Well-formedness of typing

Lemma K.1 (Well-formedness of restricted contexts). IfQctx, @'ctx, ® — ©’, then @' | Octx, @ —
®'10,and®' | — O'.

Lemma K.2 (Type well-formed with type variable removed). If O, &, @ + Ttype® and « ¢ FUV(T), then
O1, 0 F T typet.

Lemma K.3 (Substitution preserves well-formedness of types). If O, «,Or F Ttype®, then O, &,0Or +
[&/o]T type*.

Lemma K.4 (Context extension maintains variables). If @ — Q, then FUV(©) = FUV(Q) and FEV(@®) =
FEV(Q).

Lemma K.5 (Algorithmic typing is w.f.). Given a typing context © and typing environment I" such that © ctx
and © I T"env:

* IfO;TFv:PH0@/, then®'ctx, ® — ©', ®' - Ptype™, and P ground.

* IfO,THFt:NHO/, then®'ctx, ® — O/, ©' + Ntype~, and N ground.

* IfOTHFs:N>M -0, ®F Ntype™, and [BIN = N, then ©'ctx, ® = ©’/, @' - Mtype™,
[@'IM = M, and FEV(M) C FEV(N) U (FEV(®') \ FEV(©)).

L Determinism of typing

Lemma L.1 (Algorithmic typing is deterministic).
s IfO;THe: Ay 10 and O;T - e: A; 40), then Ay = A, and O] = 0).
s IfOTHt:N>M; 40 and ©;T Ft: N> M, 40}, then My = M, and ©] = ©5.

M Decidability of typing

Lemma M.1 (Decidability of algorithmic typing). There exists a total order = on well-formed algorithmic
typing judgments such that for each derivation with typing judgment premises A; and conclusion B, each A;
compares less than B, i.e. Vi. A; C B.

N Soundness of typing

N.1 Lemmas

Lemma N.1 (Extended complete context). If ©'ctx, Qctx, ® — Q, 0 = O/, and ®' | © — Q, then
3Q' such that Q' ctx, ® — Q/, and Q = Q.

Lemma N.2 (Identical restricted contexts). If ®' ctxand ® — @', then ®”" | 0@ =0"| ©’.

15



N.2 Statement

Theorem N.3 (Soundness of algorithmic typing). If Octx, © - Tenv, ®' — Q, and Q ctx, then:
* IfO,TFv:P 0O/, then ||O];T Fv:[Q]P.
* IfO;TFt:N 4O/, then |©|;T F t: [Q]N.

* IfO;TEs:N>M -0/, @F Ntype, and [O]N = N, then IM’ such that |O| - [QIM =~ M’ and
18];T+ s: [QIN > M.

O Completeness of typing

0.1 Lemmas

Lemma O.1 (Weak context extension maintains variables). If ® = ©’ then FEV(©®) C FEV(©’) and
FUV(©®) = FUV(@’).

Lemma 0.2 (Reversing context extension from a complete context). IfQ — ©then® — Q.

Lemma 0.3 (Pulling back restricted contexts). If®@ — O’ and @' | ®@" — O, then®] " — O

0.2 Statement

Theorem 0.4 (Completeness of algorithmic typing). If ©ctx, © - 'env, ® — Q, and Q ctx, then:
* If||®©|;TFv:P then 30’ such that ;T +v:P 40" and ® — Q.
o If|O|;TF t:N then 30’ such that ©;T+1t: N 40’ and ® — Q.

s IfO|;T Fs:[QIN>M, © - Ntype, and [BIN = N, then 30©’,Q’ and M’ such that ©;T I s :
N>M 40,0 = Q, 0 — Q/, |0+ QM= M, [0 M’ =M’, and Q' ctx.

Proofs

A Weakening

Lemma A.1 (Pushing uvars right preserves w.f.). Let ©[On] abbreviate ©1,0n,Or. Then if Olx, Om] +
Atype®, B[Owm, o - A type®.

Proof. By rule induction on ©[c, @] - A type™®.

* Case
B € UV(O[e, Oml)
Twfi
Olo, Om] F B type™

B € UV(O[e,®pm]) Subderivation
B €UV(O[Om,]) Since UV ignores order

= OOwm,al F B type” By[Twfuvar

16



Case
& € EV(Olx, Om])

Olx, Om] - & type ™

& € EV(O[a,©Op])  Subderivation
& € EV(O[Om, «]) Since EV ignores order

O[Om, o] - & type" By [Twfguess

Case -
Olx, ®m] F N type
Twfshif
Oloc, On] - IN type™ Lshiftl

Olo, Om] F N type~  Subderivation
O[Om, o] - N type~ Byi.h.
O[Om, o F [N typet  By|Twfshift]]

Case O, x,Om,Or, B+ Ntype™
Twfforall
O, &, Ozm,0r F V3. Ntype™

Or, &, 0OmM,0r, - N type~ Subderivation
Or,0Mm, x, O, - N type~ Byih.

O, Om, x,Or FVA.N type~ By|[Twfforall

* Case + _
Olx, Om] - P type Olx, Om] F N type
[, Om] L, M]i Twfarrow,
Ola, Om] P — N type

Olo, Opm] - P typet  Subderivation
O[Om, o] P typet Byih.
Ola,®m] F N type~  Subderivation
OOm, ] - N type~ Byi.h.

w OOm,ol P — N type~ By

* Case +
Olx,Om] F Ptype
Twfshif
Oloc, Ong] - TP rype- Wit

Olo, Opm] F P typet  Subderivation
O[Om, o - P type™ Byi.h.
= O[Om,ol - TP type~  By[Twfshift]]
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Lemma A.2 (Term well-formedness weakening). If © - A type* then ©,0’ - A type®.
Proof. By rule induction on © F A type®.

* Case ¢ uv(e)

Or xtype”
x € UV(0O) Subderivation

x €UV(0,0’) Since UV(O) C UV(O,0’)

w 0,0’ o typet By

Case 4 ¢ Eyv(@)

or anpe
& €eEV(0) Subderivation

& €EV(0,0’) Since EV(©) C EV(6,0’)
w 0,0+ & typet By

Case -
© F N type
7_ fshift
O [Niypet Lwishift]

OF N type~ Subderivation
0,0’ N type~ Byi.h.
w 0,0’ [N typet  By|Twfshift]]

Case -
O, x - N type
———— |Twfforall
O vaNpe [Lrel]

O, N type~ Subderivation
0,x,0' N type~ Byi.h.

0,0’ - N type~ By Lemma (]Pushing uvars right preserves w.f.[)
w 0,0’ Va. N type~  By|Twfforall

Case g prypet  ©F Ntype™
©F P — Ntype™

Twfarrow|

O P typet  Subderivation
©,0' - P typet Byih.

OF N type~ Subderivation
0,0’ N type~ Byi.h.

18



w 0,0'FP— N type By

* Case +
© F Ptype
————— |Twfshift
O+ TP type™ wishiftT

O P typet Subderivation
0,0’ P type™ Byih.
= 0,0 1P type~  By[Twfshift]]

Lemma A.3 (Pushing uvars right in declarative judgment). Let ©[On] abbreviate ©p,Opnm, Og.

Oloa, Om] - A <* B, O[Om, ol - A <* B.

Proof. By rule induction on O[x,Op] - A <* B.

e Case @[0(, ®M] L Btype+

Ola,Oml B <" B

< Drefl

Olx,Opm] - B type™  Subderivation

OlOm, o] - B type™ By Lemma ]E.l (IPushing uvars right preserves w.f.l)

w OOM,xdFR <R By |<*Drefl

Case gy OuIFM < N Ola,OmlFN< M

Ola,Om] F IN <7 IM
Olo, Om]F M <~ N Subderivation
OOm,a]FM <N By i.h.
Ola,®m] - N <~ M Subderivation
©Om,a] FN <M Byih
s OOm, ol F N <" M By[<*Dshift|]

Case ®Lao‘)®M)®R)B FN < M

<*Dforall
Or, o, O, O F N < VB.M

O, &, 0M,0r,FFN<"M Subderivation
Or,0m, 0, O, FN <M By'lh

= Or,0Mm,%,0r FN <" VB.M  By[<*Dforallr

19

O
Then if



* Case + _
Olx,Om] - P type Ola,Om] F [P/BIN <~ M
<*Dforalll
Ole, O] FVR. N <™ M

Ola, Om] F P typet  Subderivation
O[Om, o - P typet By Lemma qpushing uvars right preserves w.f.[)
Olx,Om] F [P/BIN <~ M Subderivation
BOm, o] F [P/BIN <~ M By i.h.
N<™M

= OOm, o - VB. By|[<*Dforall

Case g Q< P OFN< M
OFP-N<T Q- M

<*Darrow

Olo, O] FQ <P Subderivation
OOm,ol FQ <*P By i.h.
Ola, O] FN<M Subderivation
OOMm,x]FN< M By i.h.

w  OOm,alFP N <" QM By[<*Darrow

Case g Q<P o@OFP<*

Q .
AT

Ola,OmI FQ <t P Subderivation
OOMm,x]FQ <*P  Byih.
Olo, O] FP <TQ Subderivation
BOm,l P <TQ Byih

= O[Om, o] - TP < TQ  By[<*Dshift]]

Lemma A.4 (Declarative subtyping weakening). If ® - A <* B then ©,0’ - A <* B.

Proof. By rule induction on ® - A <* B.

* Case g1 yypet

———— [<Drefi
OF <" «

OF o type™  Subderivation

0,0’ « type™ By Lemma (ITerrn well-formedness weakening[)
w 0,0/ Fa<« By |<*Drefl|
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=

=

*Case g Mo N BFN< M
OF IN<" M
OFM< N Subderivation
0,0/FM < N Byih
OFN< M Subderivation
©,0'-FN< M Byih
©,0'+ [N <* M  By|<*Dshift ]

*Case g N< M

<*Dforall
@}—N§7Voc.M

0,aF N<—M
0,0,0' FN <M
0,0, aFN <M

Subderivation
By i.h.

By Lemma (]Pushing uvars right in declarative judgmend)

©,0'FN < Va.M Byih.

Case g piypet

@F [P/JN <~ M

OFVa.N<™ M

OF P typet

0,0’ - P type"™ By Lemma ¢Term well-formedness weakeningl)
OF[P/x]N <~ M
0,0’ [P/a]N <~ M
0,0’ FVa.N <~ M

Subderivation

Subderivation
By i.h.

By <*Dforalll

* Case + _
0rQ<TP OFN< M
— — <*D
O e
erQ<tp Subderivation
0,0'-FQ<TP By i.h.
OFN< M Subderivation
0,0/ -FN<™M By i.h.

w 0,0/ FPN< QM By[<*Darrow]

i Case @}_QS+P

OFP<"Q

erTP< 1Q
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OFQ <P Subderivation
0,0'-Q <P By i.h.

OFP<TQ Subderivation
©,0'-P<*Q Byih.

= 0,0'HTP < 1Q By|<*Dshift])

B’ Declarative subtyping

Lemma B.1 (Declarative subtyping is reflexive). If © - A type® then ® - A <* A.

Proof. By rule induction on © F A type®.

* Case « € UV(O)
O+ otypet

OF « type™ Assumption
w OFa<ta By [<*Drefl

* Case g Niype-
OF [Ntype"

Twfshift]

O©F N type~ Subderivation
OFN< N By i.h.
w OF [N <N By [<*Dshift |

* Case O, o - N type™

———  |Twfforall
O F Vo N type
O, xt N type~ Subderivation
O,aFN<"N By i.h.
« €UV(O,«) By definition of UV
O,k o type*

O,k Va.N <™ N
= OFVa.N < Va.N

* Case g pypet  OF Ntype™
©F P — Ntype™
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O+ P type™  Subderivation

OFP<TP By i.h.
©F N type~  Subderivation
OFN< N By i.h.

w OFP—N< PN By[<'Darrow|

* Case g prypet

— 7 [Twfshift]
O + TP type

O P typet Subderivation
OFP<*P By i.h.

= OFTP< TP By [<*Dshift]]

O

Lemma B.2 (Declarative substitution w.f.). If ©,0x F Ptype* and O, «,Or F Atype*, then ©r,0x F
[P/a] A type®.

Proof. By rule induction on O, «,®g - A type*.

* Case g uv(OL, o O8)

Twiuvar
@L) X, ®R F [5 type+ T
Case p = o
[P/odp =P By definition of [—]—
w Or,0r P typet Assumption
Case 3 # «:
[P/odfB =P By definition of [—]—
B €UV(Or, x,Or) Subderivation
B €UV(OL,0BR) Since f # «
w  Op,0g F B type” By Twfuvar]

* Case O, &, Or FN type

Twfshif
O1, 0, Op I [N type™ Lwshift)

OL,0r - P type™ Assumption
Or,®,Or = N type~ Subderivation
@]_,@R (o [P/O(]N type By i.h.
Or,0r + [[P/a]N type+ By
w  Op,0r F [P/a]|N type™ By definition of [—]—
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* Case ®L)(X)®R)E’ F Ntyp67

Twfforall
O1, a, O - VB. N type -

Or,0r - P typet  Assumption
O, &, Or, B - N type~ Subderivation
OL,0,B P type™ By Lemma (]Term well-formedness Weakeningl)
Or,0Og, B - [P/aJN type~ Byi.h.

Or,0Or FVB.[P/xIN type~ By|Twfforall

w Op,0OrF [P/x]VB.N type~ By definition of [—]—

Case + _
@La 0(>®R F Qtype @L) “>@R F Ntype
Twf:
TN

OL,0r - P type™ Assumption
O, ,Or - Q typet  Subderivation
O,0k + [P/«]Q type™ Byih.
O, ®,Or - N type~ Subderivation
Or,0r F [P/xIN type~ Byi.h.
O, Ok I [P/a]Q — [P/aIN type~  By[Twfarrow]
=3 OL,0r F [P/«](Q — N) type~ By definition of [—]—

e Case ®L) «, ®R = Qtype+

@L, &, Or F TQ type

Twishift]]

OL,0r - P type™ Assumption
O, «,Or - Q typet  Subderivation
O,0r - [P/a]Q typet Byi.h.
©r,Ox - 1[P/a]Q type~ By [Twfshift]]
w  Op,0rF [P/«]TQ type~ By definition of [—]—

Lemma B.3 (Declarative subtyping is stable under substitution). If O, O - P type™, then:

* IfOL, a0k F Qtype', Or,«,Or F Rtype™, and Or,x,Or - Q <" R, then ©,0r + [P/o]Q <*
[P/aR.

* IfOr,x,Or - Ntype™, Or,«,Or - Mtype™, and O, x,Or = N <~ M, then Or,0 - [P/x]N <~
[P/o]M.
Proof. By mutual rule induction on O, o, Og - Q <" Rand O, «,Or - N <~ M.

* Case ®L)(X»®R F Btype+

G)L)“»@R F B §+ B

< Drefl
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Case 3 # «:

[P/ulp =B
®La &,y ®R F B type+
B EUV(®L> X, G)R)
p €UV(Or,Br)
®L)®R F ‘3 typeJr
w Op,0rFB <P

Case 3 = «:

[P/odB =P
@]_,@R FP type*

By definition of [—]—
Subderivation
Inversion
Since B # «

By |Twfuvari
By [<*Drefl

By definition of [—]—
Assumption

w O,Or PP By Lemma (]Declarative subtyping is reﬂexive[)

*Case gy @FM< N  On,00rFN< M

<+ Dshift
®L)OC»®R [ J,N S+ J,M
Or,0g F P type* Assumption
@L, X, Or F J,N type* "
Or, «, O - N type~ Inversion (Twfshift]])
Or, «,0Or F [M type* Assumption

O, x,Or - M type™

@[_,OC,@R FM<™N
OL,0r - [P/a]M <™ [P/a]N
@L,(X,@R FM< N
O, 0r - [P/aJN <™ [P/a]M
w  O,0rF [[P/IN < [[P/d]M
w  Or,0rF[P/oIN <F [P/a] M

Inversion (Twfshift]]

Subderivation
By i.h.

Subderivation
"

oy 5D

By definition of [—]—

* Case _
®La(x)®R)B FN<TM
<*Dforall
L. 0 Op - N < vp.M Dl

Or,0r - P type™ Assumption
O, «,Or - N type™ "
Or, , O - VB. M type™ "
Or,0k,B P typet By Lemma Term well-formedness weakening
O, «, O, B+ N type™ By Lemmal|A.2| (Term well-formedness weakening
O, «, O, B - M type™ Inversion (Twfforall)
O, o, Or,pFN <M Subderivation
Or,0g, B F [P/adN <~ [P/a]M By i.h.

s O,k - [P/aN <~ Vp.[P/aJM  By[<*Dforallr]
= Or,0r F [P/xIN <™ [P/a]VB.M By definition of [—]—
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* Case g o @k Qtype”t OO F[Q/BIN< M

<
O, a,0r FVB.N< M

Or,0r - P type" Assumption
Or, o, Or - VB.N type~ "
O, «, O, B+ N type~ Inversion
O, a,Or - Q typet Subderivation
Or, «,Or - [Q/BIN type™ By Lemma (]Declarative substitution w.f.l)
O, x,Or FM type~ Assumption
Or, o, 0 F[Q/BIN <M Subderivation
O, 0 - [P/J[Q/BIN <~ [P/aJM By i.h.
Or,0r F [([P/adQ)/BIP/xIN <~ [P/a]M  Reordering substitutions
Or,0r F [P/aQ type™ By Lemma (]Declarative substitution w.f.l)

=3 OL,0Or FVB.[P/xIN <~ [P/a]M By (using [P/a]Q as the ground term)
= Or,0r F [P/x]VA.N <~ [P/a]M By definition of [—]—

*Case g @rFR<"Q Or,a00kFN< M

<*D
O, 0,0k FQ o N< RoM

Or,0r P type™ Assumption
Or,,0r FQ — N type™ "
O, x,0r FR = M type™ "

Or, &, Or - R type* Inversion Il
®L) &, 8R ~ Q typeJr "
OL,,0r FR<TQ Subderivation
OL,0r F [P/aR <T [P/a]Q By i.h.

Or,x,0Or - N type™ Inversion ID

O, «,Or - M type™ "

OL, 0 FN<™M Subderivation
O, Or F [P/aIN < [P/a]M By i.h.
= Or,0x - [P/adQ — [P/a]N <~ [P/aJR — [P/a]M  By[<* Darrow
= OL,0r - [P/«](Q — N) <™ [P/a](R = M) By definition of [—]—

*Case gy @rFR<TQ Or,a0gFQ<"R
O, 0,0k F1Q < TR

Or,0r - P typet Assumption
O, «, Or - TQ type~ "
O, o, Or - Q typet Inversion (Twfshift])
O, x,Or - TR type™ Assumption
Or, &, Or - R type™ Inversion lb
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OL,0r F [P/aJR <7 [P/a]Q  Byi.h.
OL,0r F [P/aQ <T [P/a]R "

w  Or,0r - TIP/aJQ < T[P/aJR  By|<*Dshift]|
w  Op,0Ort [P/a]TQ <™ [P/aJTR By definition of [—]—

O

Lemma B.4 (Symmetry of positive declarative subtyping). If ® - P < Q then ® - Q <™ P by a derivation
of equal height.

Proof. By rule inductionon ® - P <* Q.

" Case @i prypet

7+< Drefl
OF <" «

w OF oa<"oa Assumption

* Case g p <N

OFN< M
— <*Dshift
©FN <M Subderivation
OFM <N "

= OF |M<*|N By|<*Dshift]

B’.1 Isomorphic types

Lemma B.5 (Mutual subtyping substitution).  Given ©, & F P type* and ©, B + Q type*:

o If: « If:
1. ©,a F Rtype™ 1. ©,d F Mtype~
2. ©,p F Stype* 2. @,BFNtype*
3. O, xR <" [P/BIS 3. 9,k P/B <
4. ©,B8 FS <" [Q/«IR 4. ©,p [ Q/oc g
then: then:

1. V@i € B.PB1 € FUV(S) =

Fy.Pi=vy
2. Vo € &. oci € FUV(R) =
Fy. Qi =

1. V@i € B.Bi € FUV(N) =

Fy.Pi=vy
2. Vo € &. oci € FUVIM) —
Fy.Qi =

Proof. By strong mutual rule induction on the pair of @, R <H [ P/ BISand ©, B +S <* [ [Q /oc IR, and the
pair of ©, o I [ P/BN <~ M and Q, [3 I Q/ocM< N.
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° C . —
a5¢ @, & F ytype* 0, Fytypet

——— |<T Drefl =
O, akFy<'y e,pry="v
By the rule, we must have the same universal variable on both sides of both judgments.

<*Drefl

[1576}8 =y Since we have an instance of m
= P; =y For all P; such that 3; € § and ; € FUV(S)
[Q/a]R =y Since we have an instance of m
= Qi =7v Forall Q; such that &; € & and «; € FUV(R)
* Case - 5 . —
O,&FP/BIN<"M ©&FM<" [P/BIN
o+ [P/B] = o (P/B]
O, M <" [P/BIIN
If we have an instance of [<=Dshift |} then the types on both sides of the other judgment must also start
with |, so we must have another instance of
®,B F M< N ©BFN< M
y B FIQ/o L < y B < [Q/d
O, B F IN <" [Q/adIM
O, «d - M type~ Inversion (Twfshift]
O, 3 - N type~ Inversion (Twfshift|
O,x F[P/BIN <" M Subderivation
©,B +I[Q/aIM <~ N "
Pi=vy For all P; such that $; € 3 and 3; € FUV(N) (by i.h.)
Qi=vy For all Q; such that &; € & and «; € FUV(M) (by i.h.)
= Pi=vy For all P; such that $; €  and 3; € FUV(|N) (by definition of FUV)
= Qi=vy For all Q; such that o; € &« and «; € FUV(|M) (by definition of FUV)

" Case g G vrIP/BIN< M

— <*Dforalln}

©,% F [P/BIN <~ Vy.M

By induction on the number of consecutive instances of |[<*Dforallr| in the derivation of the second
judgment.

- Case o FrRupet  ©,F FIQ/mRAIM < N

= — <*Dforalll
0, B FVvy.[Q/alM <~ N

This is the base case of the inner induction. Our use of the outer induction hypothesis in this case
is why we needed to perform a strong rule induction.

O, ®,y M type~ Inversion (Twfforall]
O, F N type~ Assumption
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0, ®,y [P—/[g]N <M Subderivation
0, B I [Q/o,R/YIM <~ N "
P; =5 For all P; such that ; € E and B; € FUV(N) (by outer i.h.)
Qi=2d For all Q; such that o; € &,y and o € FUV(M) (by outer i.h.)
Qi=23 For all Q; such that &; € & and «; € FUV(Vy. M)
(by definition of FUV)
— Case

©,B,5 [Q/alvy.M <~ N’
0, B F [Q/avy.M <~ ¥5.N’

<*Dforalln}

This is the inductive step of the inner induction. Here we have n = k + 1 consecutive instances of

<=Dforallr{in the derivation of the second judgment.

©, 3,5+ N’ type~ Inversion (Twfforall)
©,B,5F [Q/aJvy.M <~ N’ Subderivation

0,5, B - N’ type~ By Lemma Pushing uvars right preserves w.f.[)
0,5, B + [Q/x]Vy.M <~ N’ By Lemma Pushing uvars right in declarative judgmentb

Pi=n For all P; such that 3; € § and ; € FUV(N’) (by inner i.h.)
Qi=n For all Q; such that «; € «,y and o € FUV(M) (by inner i.h.)
Pi =1 For all P; such that B; € B and B; € FUV(V5.N’)

(by definition of FUV)
Qi=n For all Q; such that o; € & and «; € FUV(Vy. M)

(by definition of FUV)

P Case o St Rtypet  ©, G- P/B,RAYIN < M

®, % - Vy.[P/BIN < M

We perform a case split over the derivation of the second judgment.

- Case = n re Y ;-
©,FSuype’  ©FF [Q/oc,f/é}M <~ Vy.N
0, F V5.[Q/adM’ <~ Vy.N
0, a,5+ M’ type~  Inversion (Twfforall)
o, E,y FN typem "
0, x [l%, R/yIN <~ V¥§6.M’ Subderivation
0,8 F [Q/x,S/SIM’ <~ Wy.N 7
0, «,5 [%, R/yIN <~ M/ Inversion ||
0, B,y [Q/a,S/8IM’ <~ N "
P, =1 For all P; such that ; € E,v and B; € FUV(N) (byi.h.)

For all Q; such that o; € &, % and «; € FUV(M) (by i.h.)
For all P; such that ; €  and ; € FUV(Vy.N)
(by definition of FUV)

i

- O
I
3 3

i
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Qi=n For all Q; such that o; € « and o; € FUV(V6. M)
(by definition of FUV)

Here the application of the inductive hypothesis states that every universal variable in the ar-
rays {3,y and «, that appears in the corresponding type is substituted by a universal variable
(including y and 8). As a result, the conclusion holds for just the universal variables in 3 and «.

- Case o By Q/M < N

6, F[Q/aIM <~ Vy.N

<*Dforallr

O, a - M type~ Assumption

o, E,y F N type~ Inversion (Twfforall)
QO,x+[P/B,R/YIN< M Subderivation

B,y FIQ/aM <~ N 4
P; =5 For all P; such that B; € [_5:1/ and B; € FUV(N) (by outer i.h.)
Pi=56 For all P; such that ; € E and B; € FUV(Vy.N)
(by definition of FUV)
Qi=2d For all Q; such that o; € & and «; € FUV(M) (by outer i.h.)
* Case

©,aFR<"[P/BIS O a&F[P/BIN< M
0, F[P/BIS—=N)< R M

If we have an instance of then the types on both sides of the other judgment must be
function types, so we must have another instance of [<T Darrow}

0,FFS<"[Q/alR ©,FFI[Q/xM<" N
0,8 F[Q/dd(R—M) < S—N

O, R typet  Inversion (Twfarrow|

O,BFS type™  Inversion (Twfarrow
O, xR D%]S Subderivation
©,BFS<T[Q/aR "

Pi=vy For all P; such that ; € E and B; € FUV(S) (byi.h.)
Qi=vy For all Q; such that o; € & and «; € FUV(R) (by i.h.)
O,d M type~  Inversion (Twfarrow|
O,p FN type~ Inversion (Twfarrow
O,x [P/BIN <M Subderivation
©,B F [Q/adM <~ N "
=Y For all P; such that §; € § and ; € FUV(N) (byi.h.)
Qi=v For all Q; such that &; € & and «; € FUV(M) (by i.h.)
Pi=vy For all P; such that §; € E and B; € FUV(S — N)
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(by definition of FUV)
= Qi=vy For all Q; such that &; € & and «; € FUV(R — M)
(by definition of FUV)

PCase o G P/Bls< R ©,&FR< [P/BIS
®,& - TR < [P/BITS

If we have an instance of [<=DshiftT] then the types on both sides of the other judgment must also start
with T, so we must have another instance of |[<*Dshift

6, FI[Q/R<'S ©,FFS<"[Q/aR

= — <= Dshift
©,B TS < [Q/aTR
O, a - R type"  Inversion (Twfshift])
©,B S type"  Inversion (Twfshift]]
O,xFR<T [%]S Subderivation
©,B+S<"[Q/xR
Pi=v For all P; such that ; € B and By € FUV(S) (by i.h.)
Qi=vy For all Q; such that &; € & and «; € FUV(R) (by i.h.)
= Pi=vy For all P; such that ; € [’3' and B; € FUV(TS)
(by definition of FUV)
= Qi=v For all Q; such that &; € & and «; € FUV(TR)
(by definition of FUV)

Lemma B.6 (Isomorphic types are the same size). If:
1. OF Atypet
2. ©F Btype*
3. 0FA="B
then \A\NQ = IBINQ.
Proof. By rule inductionon®F A <* Band®F B <* A.

e Case + n
O I vy type O I ytype
4 <*Drefl Y

7+ >~ 7+ S Drefl
OFy<"vy OFy<'y

ww  |ylyo = vly, Identical LHS and RHS
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* Case — _ _ _
OFN< M OFM< N OFM< N OFN< M
— — <*Dshift — — <*Dshift
ST M= N ST INT M

OF |[M typet  Assumption

©F M type~ Inversion lb
OF [N typet  Assumption

OF N type~ Inversion (Twfshift|))

OFM< N Subderivation
OFN< M Subderivation

IMlyo = INlyo By i.h.
w  [[Ml, =IIN[,, By definition of I~lxo

e Case + _ _
© F Ptype OF[P/a]M <™ N O,aFN<" M
<= Dforalll <= Dforall
OFvVa.M< N = o @I—N§*Voc.Mm

OF P typet Subderivation
O+ N type~ Assumption
O,x - N type~ By Lemma QTerm well-formedness Weakening|)
OF V.M type™ Assumption
O,k M type~ Inversion
OF [P/a]M <N Subderivation
O,aFN<™M Subderivation
P € Uvar By Lemma QMutual subtyping substitution[)

IIP/adMly, = Ml Since [Ply, =1 =|oy,
OF [P/a]M type~ By Lemma Declarative substitution w.f.[)
OFN < [P/aJM ByLemma Declarative subtyping is stable under substitution[)
I[P/oc]l\/llNQ = \NINQ By i.h. (since P € Uvar, the derivation of ® - N <~ [P/x]M is
the same size as the derivation of @, x F N <~ M)
|M|NQ = ‘NlNQ Using |[P/(X]M|NQ = |M‘NQ
Vex. MINQ = \NINQ By definition of type size

* Case - + _
0,0FM< N ©F Ptypet® F [P/adN <~ M
<=Dforall <*Dforalll
@}—MS*VOL.N-m OFVa.N< M = o

Symmetrical to the previous case (M and N are swapped).

*Case gL o< p OFM< N

OFP<* OFN< M
OFP-M< Q—N o E

T

OFP— N type™ Assumption
OF P typet Inversion li
OF N type™ "
OFQ— M type™ Assumption



OF Q typet Inversion ll
O F M type~ "
OFP<TQ Subderivation
OFQ<P ”
IPlyo = 1Qlxq By i.h.
OFM< N Subderivation
OFN< M "
Ml = NIy By i.h.

w [P M|NQ =1Q — N‘NQ

*Case gL o< p @FP<TQ

O+ TP type~
OF P typet
O+ TQ type~
OF Q typet

OFP<'Q
OFQ<'P
IPlyo = 1Qlyo
ITPlyo = ITQlxo

OFTP< 1Q
Assumption
Inversion (TwfshiftT]
Assumption
Inversion (TwfshiftT])
Subderivation
"

By i.h.
By definition of [/,

B’.2 Transitivity

By definition of type size

erQ<TP OFQ<TP

ST

Lemma B.7 (Declarative subtyping is transitive). If © - A type*, © - Btypet, © - Ctypet, ©® - A <* B,
and ®+ B <= C, then ® + A <* C.

Proof. By rule induction on ® - B <* C weighted by the lexicographic ordering of (IBlyo> NPQ(B)+NPQ(C))
in the positive case and (|Cl,, NPQ(B) + NPQ(C)) in the negative case.

" Case g1 aiypet

O+ atypet

oFa< « OFa< o0

OF o type™  Subderivation

iw OFa<ta

* Case g M <N

OFN< M

OF IN<' M

OFN' <M OFM< N/

EIvEaT

The second judgment must be an instance of due to the structure of |M.
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=

=

©F |N type*
OF [M typet
O+ [N’ type*
©F N type~
©F M type~
OF N’ type~

OFM <N
OFN<"M
IMlyo = INlyq
OFM < N/
OFN' <M
|M|NQ = ‘N/|NQ

OFN <M
OFM< N
OFN'< N
OFN<M
OFM< N’
OFN< N
@F IN <+ [N/

*Case g yrM<

Assumption
"

"
Inversion (Twfshift])
: (Twfshiel)

"

Subderivation
1

By Lemma QIsomorphic types are the same size|)

Subderivation
"

By Lemma (IIsomorphic types are the same size[)

Above

"

By i.h. (IN|y, =My, < [IMly,)
Above

"

By i.h. (IN'|, = IMly, < [IMl,)

By [<*Dshift |

Nl

@}_M<7V N/
<" Va.

Here we only need to decompose the second declarative judgment.

©F N type~

O,x kN type~
OFM type™
O, M type~

0, x - Va. N’ type™
O, N’ type~

OFN< M
O, aF N<—M
0,0 M< N’
0,0k N < N

OFN < Va.N

* Case O, akN<~

Assumption
By Lemma qTerm well-formedness weakeningb
Assumption
By Lemma (ITerm well-formedness weakeningp
Assumption

Inversion (Twfforall))

Assumption
By Lemma (IDeclarative subtyping Weakeningl)
Subderivation
By i.h. (IN'[, = [Vo. N’|, and the number of prenex quantifiers in
the second judgment has reduced by 1)
! By (o« ¢ FUV(N) since « ¢ UV(®) (because « fresh)
and also © - N type™)

M O+ Ptype® OF [P/a]M <~ N’

@}—N<7V M @l_v M<7N/ S Dforalll
>~ X. . <
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=

©F N type™
OF Va.M type~
O, M type
O+ N’ type~

0,aFN< M
O+ P type"

@+ N < [P/adM

F[P/oadM <~ N/

OFN< N/

d Case @}_QS+P

OFN<™M

Assumption
Assumption

Inversion (Twfforall)

Assumption

Subderivation

Subderivation

By Lemma (IDeclarative subtyping is stable under substitutionl)
(v ¢ FUV(N) by side condition of |[<* Dforallr]

Subderivation

By i.h. (IN’[, = IN’ly, and the number of prenex quantifiers in
the second judgment has reduced by 1. Substitution
can only replace positive types, so it cannot change the
number of prenex quantifiers in a negative type)

OFP <" Q OFM< N’

OFPoSN<T Q- M

©FP — N type™
©F P type"
O+ N type~

OFQ—M type™

OF Q type™
OFM type~

©F P’ — N’ type™

OF P’ type"
O+ N’ type~

®FP' < Q
@+ Q<P
|P/|NQ = |Q|NQ

®FP <" Q
OFQ<'P
P <P
®FN< M
OFM< N/
®FN< N/

I
)
Y
S
2

OFQ—-M< P — N’

Assumption

Inversion (Twfarrow)

"

Assumption

Inversion (Twfarrow)

"

Assumption

Inversion Il

"

Subderivation
By Lemma Symmetry of positive declarative subtypingl)
By Lemma [B.6| (Isomorphic types are the same size)

Subderivation
1

By i.h. (IQly, =PIy < [P" = NI0)

Subderivation
"

By i.h. N’y < IP" = N'I.)

w OFP o N< P 5N By

*Case g g<*P OFP<'Q
Or TP < 1Q

Symmetrical to [<*Dshift|| case.

®FP' <tQ ©rQ<'P
OrTQ< TP’




C’ Weak context extension

Lemma C.1 (= subsumes —). If® — O/, then ® — ©'.

Proof. By rule induction over the ® — ©’ judgment.

* Case

Cempty

o=y

* Case /
e — 06
—-C ar|
0,0 — O, =

0 = 0O By i.h.

w 0,0 — 0« By

® Case @ - @/

O 2 [Cunsolvedgues
0,8 — O, &

0 = 0O By i.h.
w 0,8 — 0,& By|WcunsoIvedguess|

* Case /
® — 06
65 5 o o p e

0 = 0O By i.h.

= 0,0 = 0,a=P ByWesohegoes

Case ’ ~F
® — 0 O -P="Q
O.a_p 0. a= Q Csolvedguess|

0 = 0O’ By i.h.
®|FP="Q Premise

w O,8=P = ©',& =P By|Wcsolvedguess|

Lemma C.2 (Weak context extension is reflexive). For all contexts ©®, ® — ©.

36



Proof. Corollary of Lemma (Context extension is reflexivel).

©® — © BylLemma Context extension is reﬂexivel)
w © — © BylLemma|C.1{(= subsumes —)

Lemma C.3 (Equality of declarative contexts (weak)). If © = ©’, then ||©| = ||©’||.

Proof. By rule induction over the ® = O’ judgment.

* Case

—— |Wcempt
—— [eempo)

= =

* Case /
0= 0
—_— W
s
|©,«f = ||®],« By definition of ||—||
=|©’||,« Byi.h.
=||®’,«| By definition of ||—||

* Case 0 — O

—— — [Wcunsolvedguess|
0,8 = 0, &

1©,&] = ||9]| By definition of |—||
= ||©@’| By i.h.
= ||®’,&|| By definition of ||—||

* Case 0 — O

o e

1©,&] = ||9]| By definition of ||—||
= ||©/| By i.h.
=|©’,& =P|| By definition of ||—||

* Case ® — ®/ ||®|| FP%JF Q
0,8—P — 0,4=0

\Wcsolvedguess
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l©,&="P| = 0| By definition of |—||
= [|@’| By i.h.
= ||®’,& =Q]J By definition of |—||

® Case @ :> @l

0 = 0,&

|Wenewunsolvedguess|

el =e’l  Byih.
= ||®’,&|| By definition of ||—||

* Case

0 — O W — |
cnewsolveaguess

0 = 0,&a=P

] = (o] By ih.

=||®’,& =P| By definition of |—||

Lemma C.4 (Weak context extension is transitive). If ® = ©’ and ®’' — 0", then @ — Q"

Proof. By rule induction over the ® = ©" judgment.

* Neither |Wcnewunsolvedguess| nor Wcnewunsolvedguess

By rule induction over the ® =— O’ judgment.

— Case
— [Wcempty
=

w - —> ©@” Assumption

- Case

By inversion on the second assumption (Wcuvar), the last context must be ", w.

0 = 0" Inversion
0 = 0" By i.h.

i 0,0 — 0"« By
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— Case 0 — O

————— |Wcunsolvedguess|
0,8 = 0,4

By inversion on the second assumption, we must have either ©’,& — ©”, & (Wcunsolvedguess)
or @, & = ©",& =P (Wcsolveguess):
* Case @',&a = 0", &:

e = 6" Inversion (]Wcunsolvedguess[)

0 = 0" By i.h.
w 0,8 = 0",& Byl\NcunsoIvedguessl

« Case ©',& = O",& =P:

0 = 0" Inversion 1|
0 = 6" By i.h.

« 0,8 —0",a=P ByWesohegues

— Case o — ®/ ||®|| P %Jr Q

hr A Mot

By inversion on the second assumption (Wcsolvedguess), the last context must be of the form
0",a =R.

0,6=Q = ©",& =R Assumption

0 = 6" Inversion (Wcsolvedguess)

o] -Q="R "
0 = 0" By i.h.
®|FP="Q Premise
®]|FQ="R By Lemma Equality of declarative contexts (Weak)l)
|®+P="R By Lemma B.7| (Declarative subtyping is transitive))

w 0,8=P = 0",&a=R Blecholve-dgu-essl

— Case 0 — 0

o e [T

By inversion on the second assumption (Wcsolvedguess)), the last context must be of the form
0", &=0Q.

0,a=P = 0",&=Q Assumption
e = 6" Inversion (Wcsolvedguess))

® — 0" By i.h.

v ©8—0%2-0 byWeoeed
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— Case 0 — O - —
o — @/’&| cnewunsolvedguess|

By inversion on the second assumption, we must have either ©’,& =— ©”, & (Wcunsolvedguess)
or @, & = ©",& =P (Wcsolvedguess):
* Case ®',&a — O",&:

0,& = O”,& Assumption
e = 0" Inversion (]Wcunsolvedguess[)

0 = 0" By i.h.
0 = 0" & BychnewunsoIvedguessl

« Case @', & = O",& =P:

0,& = O”,& =P Assumption
e = 0" Inversion (Wcsolvedguess)

0 = 0" By i.h.
0 =0",a="P BychnewsoIvedguessl

— Case 0 — o
0 — 0,a=P

By inversion on the second assumption (Wcsolvedguess)), the last context must be of the form
0", &a=Q.

[Wenewsolvedguess|

0, ,a=P = 0",2=Q Assumption
0 — 0" Inversion ll

0 — 0" By i.h.
0 =0"a=0Q Byl\/VcnewsoIvedguessl

e Case e’ — Q"

@l :> @/l)&

|VVcnewunso|vedguess|

® — ©”  Byih
. 0 = 0"’ BylVVcnewunsoIvedguessl

e Case e’ — Q"

0 — 0",a=p

|\Ncnewunso|vedguess|
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0 = 0" By i.h.
w 0 = 0",a=P By|VVcnewso|vedguess

Lemma C.5 (Weak context extension preserves well-formedness). If ® + Atypet and ® — ©’ then
O’ + Atype®.

Proof. By rule induction over the © - A type* judgment.

* Case , c pyv(e)
O+ otypet

« €FUV(@) Premise
o« € FUV(@’) Inversion (must have instance of
w O F o typet By

* Case 4 c pRv(O)

T atyper eSS

& €FEV(O) Premise
& € FEV(O’) Inversion (must have instance of |Wcunso|vedguess[, |Wcso|veguess[, or |Wcso|vedguess[)

= O'F&typet  By|Twfguess

* Case g Niype~

W

O’ N type~ Byih.

= ©O'F |N type~ By[Twfshift]]

* Case O, a - Ntype™

oF Vo Nype Lol
X.

0 = O Assumption

O,k N type~ Byi.h.
w O FVa. N type~  By|Twfforall
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* Case + _
© - Ptype O F N type
O©F P — Ntype™
O’ P type™ Byih.
O’ N type~ Byih.

= O FP—N type

By [Fwfarron

* Case g pypet

W

O’ P type™ Byih.

@'+ TP type~  By[Twfshift]

Lemma C.6 (Weak context extension preserves w.f. envs). If @ =—> O’ and © + T"env, then ®' |- I"env.

Proof. By rule induction over the definition of well-formed typing environments.

* Case

O ~eny [EWfempty

w O'F-.-env  By|Ewfempty

* Case 4
O+ lenv © F Ptype P ground
2 s
OFTx:Penv

©FTx:Penv Assumption

O FTenv By premise

O’ FTenv By i.h.
O F P type* By premise
O’ P type* By Lemma
P ground By premise

= O’ FTIx:Penv

By Ewivar
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Lemma C.7 (The extended context makes the type ground (weak)). If © ctx, @' ctx, ® = ©’, and [O’][O]A
ground, then [©’]A ground.

Proof. Consider an arbitrary existential variable & in A. Then for [@’][@]A to be ground, we must have at
least one of & =P € ©, or & = Q € ©’. We know that applying the contexts to the type will never introduce
a non-ground type since © ctx and ©’ ctx.

By inversion on ® = ©’, we can also see that if an existential variable is solved in the left-hand side
context, then it must also be solved in the right-hand side context. Therefore we must have that 8 = Q € ©’,
and by ©’ ctx we know that Q is ground.

We now know that every existential variable in A is solved as a ground type by @', hence [@']A must be
ground. O

Lemma C.8 (Extending context preserves groundness (weak)). If © ctx, ©' ctx, @ = ©’, and [@]A ground,
then [©']A ground.

Proof. Corollary of Lemma (The extended context makes the type ground (weak)).

O ctx Assumption
O’ ctx Assumption
0 = 0O’ Assumption

[BJA ground Assumption
[O']1[O]JA ground By Lemma pplying a context to a ground type)
> [@']A ground By Lemma The extended context makes the type ground (weak)|)

D’ Context extension

Lemma D.1 (Context extension is reflexive). For all contexts ©, ©@ — ©.

Proof. By structural induction on ©.
* Case -:

w - — - By|Cempty|

* Case O, o

® —0 By i.h.
w O, — O,x By

* Case O, &:

0 —0 By i.h.

w 0,8 — O,& By|Cunsolvedguess
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* Case ©,& =P:

® — 0 By i.h.
OFP="P By Lemmalﬁ (Declarative subtyping is reﬂexivel)

iw O,a=P — 0,8 =P By|Csolvedguess

O
Lemma D.2 (Equality of declarative contexts). If ® — ©’, then ||©] = |©’|.
Proof. Corollary of Lemma (Equality of declarative contexts (weak))).
0 — 0 Assumption
0 = 0O By Lemma — subsumes — )
ww |©| =]©’| ByLemma Equality of declarative contexts (weak))
O

Lemma D.3 (Context extension is transitive). If® — ©'and ®' — O, then® — Q.

Proof. By rule induction over the ® — ©’ judgment.

* Case

Cempty

w - — @ Assumption

* Case 0 — 0 -
—-uvar
O, — O

By inversion on the second assumption (Cuvar]), the last context must be ", «.
0 — 0" Inversion ll

e — 0" By i.h.
w 0,0 — 07« By

* Case 0 0

O O Cunsolvedgues
0,8 — O, &

By inversion on the second assumption, we must have either ’',& — ©” & (Cunsolvedguess) or
0',& — 0",& =P (Csolveguess):

- Case @', & — O",&:
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e — 6" Inversion (Cunsolvedguess)
e — 0" By i.h.

w 0,8 — O”,& Byl|Cunsolvedguess
- Case@’,& — O",&a="P:

e — e Inversion li
0 — 0" By i.h.
v 0,8 —0",&a="P By

* Case / —
® — 0 8| -P="Q
O.a_p 0. &= Q Csolvedguess|

By inversion on the second assumption (Csolvedguess)), the last context must be of the form ©”,& = R.

0,6=Q — ©”,&=R Assumption

e — 0" Inversion (Csolvedguess])

lo'lFQ="R "
e — 0" By i.h.
®+P="Q Premise
|©FQ="R By Lemma (Equality of declarative contexts)
|[®|FP="R By Lemma [B.7| (Declarative subtyping is transitivel)

w O,a=P — ©”,&=R By|Csolvedguess

* Case ’
e — 06
6% — o & _p o

By inversion on the second assumption (Csolvedguess), the last context must be of the form ©”, & = Q.

0,a=P — 0",&=Q Assumption
e — 6" Inversion (Csolvedguess)
0 — 0" By i.h.
«  08-—0%a-Q By[Coveges

Lemma D.4 (Context extension preserves w.f.). If © - A type* and ® — ©’, then ®' - A type®.

Proof. By rule induction on © F A type®.
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Case « € UV(O)
O F atypet

o« €UV(O)  Subderivation
e — 0O Assumption

o €UV(®’) Inversion ll
O’ F « typet By

Case
& € EV(©)
OF atype”

0 — 0 Assumption
& €EV(©)  Subderivation
& €EV(®’) Must have an instance 0f|Cunso|vedguess|, |Cso|veguessl, or |Cso|vedguess

©'F & type*  By[Twiuval

Case -
© F N type
7_ fshift
OF [Niype" Lwshift]

O©F N type~ Subderivation
0 — 0 Assumption
O’ N type~ Byih.

@'k [N typet By[Twfshift]]

Case -
O, x - N type
——  [Twfforall
O vaNpe [Lrel]

O, N type~ Subderivation
0 — 0 Assumption
0,6 — O, By
©’,aF N type~ Byih.

O’ Vo N type~  By|Twfforall

Case g prypet  ©F Ntype~

ST

O F P typet Subderivation
0 — 0 Assumption
O’ F P type™ Byih.
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OF N type~ Subderivation
O’ N type- Byih.
= ©'FP— N type By|Twfarrow

* Case g pypet

W

O P typet  Subderivation
e—e
®'F P type* Byih

= O+ 1P type~ By[Twfshift]]

Lemma D.5 (Applying a context to a ground type). If A ground, then [O]A = A.

Proof. By structural induction on ©.
* Case -:

[JA=A By definition of [-]—

¢ Case O, «:
[, x]A = [O]JA By definition of [—]—
=A By i.h.
* Case O, &:
[, &]A = [O]A By definition of [—]—

=A By i.h.

e Case©®,a=P:

[©,& = PJA = [@]([P/&]A) By definition of [—]—
= [B]JA A ground, so no &s to substitute
=A By i.h.

Lemma D.6 (Context application is idempotent). If O ctx, then [O][O]A = [O]A.
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Proof. By structural induction on O:.
* Case -:

[][JA = A By definition of [-]—

* Case O, o
O, «][O, x]A = [O][O]JA By definition of [—]—
=A By i.h.
* Case O, &:
6, ]][0, ’]A = [O][O]JA By definition of [—]—
=A By i.h.
* Case ©,& =P:

O][P/&]A By definition of [—]—

[ ]
= [P/&][B][B]A P ground and ©, & = P ctx, so & does not reappear
= [P/&][B]A By i.h.
= [O][P/R]IA P ground and O, & = P ctx, so & does not reappear
= [0,& =PJA By definition of [—]—

O

Lemma D.7 (The extended context makes the type ground). If © ctx, O’ ctx, ® — ©’, and [O'][O]A ground,
then [@']A ground.

Proof. Corollary of Lemma (The extended context makes the type ground (weak)).

O ctx Assumption
0’ ctx Assumption
0 — 0 Assumption
0 = O By Lemma (]:> subsumes —>|)

[@'][@]A ground Assumption
[@’]A ground By Lemma the extended context makes the type ground (Weak)[)

O

Lemma D.8 (Extending context preserves groundness). If ©ctx, ©'ctx, @ — ©’, and [O]A ground, then
[@']A ground.

Proof. Corollary of Lemma (Extending context preserves groundness (weak))).

48



O ctx Assumption

O’ ctx Assumption
0 — 0 Assumption
0 = 0’ By Lemma (]:> subsumes —)[)

[O]A ground Assumption
[@’]A ground By Lemma (]Extending context preserves groundness (weak)[)

E’ Well-formedness of subtyping

Lemma E.1 (Applying context to the type preserves w.f.). If © ctx and © I A type®, then © I- [O]A type*.

Proof. By rule induction on © F A type®.

* Case , - yy(e)
O F atypet

OF « type™ Assumption
Ola = « By definition of [—]—
w OF [@lx type™ By above two statements

* Case » cEV(O)

OF atype’ eSS

Case (A =P) € O:

© ctx Assumption
O+ P typet Must have an instance of |[Cwfsolvedguess
Ol =P By definition of [—]—

w OF [O]& type™ By above two statements

Case (A =P) ¢ O:

OF & type™ Assumption
Bla==a& Since (R =P) ¢ ©
w OF [O]& typet By above two statements

* Case -
© F N type
7_ fshift
OF [Ntype" Lshift]

© ctx Assumption
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O©F N type~ Subderivation
O [OIN type~ Byih.
@ [OIN typet By[Twfshift]]
w OF [O]N typet By definition of [—]—

* Case O, a - Ntype™

—— X  |Twfforall
© - V. N type

O ctx Assumption
0, x ctx By
O, N type~ Subderivation
O,k [O,N type~ Byi.h.
O, a - [OIN type~ By definition of [—]—
O F Va. [OIN type~  By|Twfforall
w  OF [OlVa. N type~ By definition of [—]—

* Case g pypet  OF Ntype™

Twf;
©F P — Ntype™
© ctx Assumption

OF P typet  Subderivation
O [O]P typet Byih.

OF N type~ Subderivation
O+ [BIN type~ By i.h.

O [O]P — [OIN type~  By[Twfarrow]
w OF [O](P— N) type~ By definition of [—]—

* Case g pype*

———— |Twfshif
OF TPrype Lwihiftl

O ctx Assumption
O P typet  Subderivation
O+ [B]P type* Byi.h.
[

O+ T[OIP type~ By[Twfshift]]

w OF [O]TP type~ By definition of [—]—

Lemma E.2 (Algorithmic subtyping is w.f.).
s IfOFP <t Q-0 Octx, P ground, and [O]Q = Q, then @’ ctx, ® — ©’, and [@’]Q ground.
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* IfOFN <™ MA@/, Octx, M ground, and [O]N = N, then ©' ctx, ® — ©’, and [©’]N ground.

Proof. By mutual induction on the derivation of @ - A <* B 4©".

* Case

<= Arefl
@]_,0(,@R [ OC§+ o @L,(X,@R —

= O, «, O ctx

w O, a0k — O, a0

Assumption
By Lemma (]Context extension is reﬂexivel)

O, &, Orlax = x
o ground

Assumption
Assumption

= O, &, Ol ground By the previous two statements
* Case +
OL + Ptype P ground
<= Ainst]
O, &,0r FP <" &40L,&=P,0g
O, &,0Or ctx Assumption
OL F P type™ Subderivation
P ground Assumption
= Or,& = P,0Og ctx Replacing the instance of |Cwfu nsolvedguess| corresponding
to & with an instance of [Cwfsolvedguess|
0, — O By Lemma (]Context extension is reﬂexive|)
@L,&—)GL,QZP By
Or — By By Lemma (]Context extension is reﬂexive[)
O, 8,0 — OL,& =P,0r Reapplying rules from g — O
O, & =P,Orl&a =P By definition of [—]—
= [Or, & = P,Or]& ground By the previous two statements

* Case g M < NHO

O'FN< [@IMH40”

OF IN<" IM40”

IN ground Assumption
BlIM =M Assumption
We have:
OFM < NHO’ Subderivation
O ctx Assumption
N ground By definition of ground
BM =M By definition of [—]—
Therefore:
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Q' ctx
0 — 0
[@'IM ground

By i.h.

"

Now, looking at the second premise, we have:

O'FN< [@IMH40”

O’ ctx
[@'IM ground
[@'IN =N

Therefore:
e — 0"
= O ctx
= e —

[@”]M ground
= [©"]]M ground

Subderivation
Above
Above

By Lemma (]Applying a context to a ground type[)

By i.h.

"

By Lemma Context extension is transitive])
By Lemma m Extending context preserves groundnessl)
By definition of ground

*Case g v N< MH0O,«

O ctx
Yo. M ground
[OIN =N

We have:

0,0 N< MH0',a

O, x ctx
M ground
O,x]N =N

Therefore:

O/, x ctx
0,0 — O, «
O, oJN ground

= O’ ctx
= ® — 0O
= [@'IN ground

* Case g ot [R/IN <~ M40, &[=P]

Assumption
Assumption
Assumption

Subderivation

By[Coruver

By definition of ground

Since [, a]N = [@]N by definition of [—]—

By i.h.

1"

"

Inversion (Cwfuvari

Inversion (Cuvar
Since [@'IN = [@’, «]N by definition of [—]—

M # Yo M/

OFVYa.N<" M40’
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O ctx
OVa. N = Va. N
[®IN =N

We have:

O,&F [&/u]N <~ M 4O, &= P]
O, & ctx
M ground
Bla=2&
[©, &l[&/«IN = [&/«IN

Therefore:

Q',&[=P] ctx
0,2 — 0',a[="P]
@', &[= Pll[&/aJN ground

= O’ ctx

= e — 0O
[@’IN ground

= [@'Va. N ground

*Case g o<+ pq0E

O'F[EOIN<  M40”

Assumption
Assumption
By definition of [—]—

Subderivation
By|waunsoIvedguess|
Assumption

Since O, & ctx

Since [@]& = & and [O]N = N

By i.h.

"

"

Inversion (Cwfuvar
Inversion (Cuvar
Using above, « ground, and & ¢ FEV(N)

By definition of ground and [—]—

OFP-SN< Q—-oM-HO"

Q — M ground  Assumption
B](P = N)=P—=N  Assumption
We have:
OFQ<TPHO’ Subderivation
© ctx Assumption
Q ground  Since Q — M ground
[BIP =P By definition of [—]—
Therefore:
0’ ctx By i.h.
0 — 0O "
[O']P ground "

Looking at the second premise, we have:

O F[O®'IN < M 40" Subderivation
O’ ctx Above
M ground  Since Q — M ground

©10'IN = [©IN

Therefore:

By Lemma (]Context application is idempotent|)
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= Q" ctx
e — 0"
[©"][®'IN ground

= e — "
[@”IN ground
[©"]P ground

= [@”]P — N ground

*Case g o<+ pq0E

By i.h.

"

"

By Lemma Context extension is transitive

By Lemma The extended context makes the type ground)

Applying Lemma |D_8| (]Extending context preserves groundness[)
with [©']P ground

From equations above

@+ @IP<tQHO”

<= Ashift
TQ ground Assumption
[OITP = TP Assumption
We have:
OFQ<"P-H@®’ Subderivation
O ctx Assumption
Q ground Since TQ ground
[B]P = P By definition of [—]—
Therefore:
O’ ctx By i.h.
0 — 0 "
[@']P ground "

Looking at the second premise, we have:

e'+@P< Q40"

®’ ctx
[@']P ground
©1Q0=Q
Therefore:
= 0" ctx
0 — 0"
= 0 — 0"
[@"]P ground
= [@”]TP ground

Subderivation
Above
Above

By Lemma QApplying a context to a ground type|)

By i.h.

"

By Lemma (]Context extension is transitive))

Applying Lemmam (Extending context preserves groundness[)
with [@’]P ground

By definition of groundness and above
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F’  Soundness of subtyping

F’.1 Lemmas for soundness

Lemma F.1 (Completing context preserves w.f.). If © - A type* and A ground then ||©|| - A type*.
Proof. By rule induction on © F A type®.

* Case « € UV(O)

OF xiype’
x e UV(O) Subderivation

« € UV([Q]O) By definition of [—]—

w ||O F o type™ By

* Case
& € EV(O)
OF agpe”

Not possible, since A is ground.

* Case g Niype-

W

IN ground Assumption
©F N type™ Subderivation
N ground By definition of ground
I®||F N type™ By i.h.
e [[©] - IN type*  By[Twishift ]

* Case g | Nitype

o Vo Niype- Lrorel]
X. [S

Vo. N ground Assumption
O,x kN type~ Subderivation
N ground By definition of ground
[Q](©,«) - N type~  Byih.
[Q]O, x - N type~ By definition of [—]—

w  ||O|| FVa.N type~  By[Twfforall

* Case + _
O F Ptype O F N type
L TP
©F P — Ntype
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=

P — N ground Assumption
OF P typet Subderivation
P ground By definition of ground
8| P typet  Byih.
OF N type~ Subderivation
N ground By definition of ground
|©| F N type~  Byi.h.
|©] P — N type~  By|[Twfarrow

* Case g pypet

=

OF TPrype Lwishift]

TP ground Assumption
OF P typet  Subderivation
P ground By definition of ground
lI®| + P typet  Byih.
O] F 1P tpe~  ByfTwhshife]

Lemma F.2 (= leads to isomorphic types). If:

1.

oA Wb

O + A type*
0 = 0O
[@']A ground
O ctx

O’ ctx

then |©|| - [0'][O]A =* [©']A.

Proof. By rule induction on © F A type®.

* Case = UV(@)

=

O F atype”

OF « type™ Subderivation
|©] - « typet By Lemma

1Ol F o <" By [<*Drefl
|©] - [©][@lax =" [@']x By Lemma|D.5

(]Completing context preserves w.f.[)

(]Applying a context to a ground typel)
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* Case » cRv(@)

OF ayper s

Case Ol& = &:

(& =P) c®’ Where P = [@']R, since [@’]& ground
O’ F P type™ Inversion on @’ ctx (must have instance of |waso|vedguess|)
|©’|| F P type* By Lemma F.1| (Completing context preserves w.f))
|©|| - P type™ ByLemma (Equality of declarative contexts (Weak)l)
|©|| F @& type™ Substituting for P
8|+ ©1a *©1a By Lemma (]Declarative subtyping is reﬂexivel)
w ||O F [O]0]& T[@']& Aswe are in the case that [O]& = &

~
~

Case [O]& # &:

O] F [BLla =t [©/]& Inversion on ® = O’ (must have instance ofl\_/\_/csolvedguesgl,
|\Ncnewunso|vedguess|, or Wcnewsolvedguess)
O F [O1]& type" Inversion on O ctx (must have instance of |waso|vedguess[)
19| + [Bla =T [@& By Lemm@' (]Declarative subtyping weakeningD and

Lemma D.5[ (Applying a context to a ground type)
w ||© F[@]@la="[0@]& ByLemmal|D.5|(Applying a context to a ground type[)

* Case g Niype-

W

OF N type™ Subderivation
0 = 0’ Assumption
[@’]IN ground Assumption
[@’IN ground By definition of ground

O ctx Assumption
O’ ctx Assumption
0] - ©1eIN="[eN  Byih.

[l 11

w  [|O] - [©'][e]IN

* 1IN By and definition of [—]—

" Case g i Nitype~

o+ Ve Niype- (Lol
X.

O, x N type™ Subderivation
0 = 0O’ Assumption
[@'Va. N ground Assumption
O/, «J]N ground By definition of ground
O ctx Assumption
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0, « ctx By
0’ ctx Assumption
O/, « ctx By
16, x| F 0, «[O, a]N =" [0, a]N By i.h.
19, «f| F [@][6IN =" [@'IN By definition of [—]—
O], - [©][BIN =" [®'IN By definition of ||—||
O], o type® By
O], x+ [©]eVa.N <~ [@']N By |<* Dforalll and definition of []—
O] - [©][e]Va. N <~ [©']Vex. N By |<*Dforallr| (« ¢ FUV(N)) and definition of [—]—
O], o= o type™ Above
O], [© V. N <~ [©][OIN By [<* Dforalll|and definition of []—
O] F [@'Va. N < [@'][@Va. N By|<=Dforallr| (o« ¢ FUV(N)) and definition of [—]—
= 18] F [@1[eVa. N =™ [@'Va. N Since we have the two component judgments
* Case + _
© - Ptype © N type
O©F P — Ntype
OF P typet Subderivation
0 = 0O Assumption
[©'](P — N) ground Assumption
[@’]P ground By definition of ground
O ctx Assumption
O’ ctx Assumption
e+ ©e1er =" P By i.h.
©F N type~ Subderivation
0 = 0’ Above
[@’IN ground By definition of ground
O ctx Above
O’ ctx Above
O] F [©'][eIN =" [©'IN By i.h.
w  [|©] - [©1[6](P — N) = [0'](P = N) By|[<*Darrow|and definition of [—]—
* Case
©FP
7typ TwfshiftT]

©F TPtyp

Symmetric to [T wfshift ]| case.

Lemma F.3 (= leads to isomorphic types (ground)). If:

1. OF Atype*
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2. [B]A ground
3.0 =0
4. Octx

5. ©'ctx

then ||©| + [OIA =* [©']A.
Proof. Corollary of Lemma[F-2]

OF A type*
0 = 0
[@]A ground
[@']A ground
O ctx
O’ ctx
|e] + [©1[e]A =* [0']A
. 0] + [BIA =* [@"A

Assumption
"

Assumption
By Lemma (]Extending context preserves groundness (weak)l)
"

"

By Lemma|F.2| (= leads to isomorphic types)
By Lemma (Applying a context to a ground typel)

Lemma F.4 (— leads to isomorphic types). If:

1. ©F Atype*t
0 — O
[@']A ground

O ctx

voA W N

O’ ctx

then |©|| F [©'][O]A =T [O']A.

Proof. Corollary of Lemma [F.2] (= Teads to isomorphic types).

OF A type*
® — 0
e — O
[@’]A ground
O ctx
O’ ctx
w  ||0] F [O'[6]A =F [@']A

Assumption

Assumption

By Lemma (I:> subsumes —)l)
Assumption

Assumption

Assumption

By Lemma (|:> leads to isomorphic typesl)

Lemma F.5 (— leads to isomorphic types (ground)). If:

1. ©F Atype*
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2. [B]A ground
3.6 — 0O
4. Octx

5. ©'ctx

then ||©| + [OIA =* [©']A.

Proof. Corollary of Lemma (= leads to isomorphic types (ground)).

OF A typet  Assumption
[O]A ground Assumption

0 — 0 Assumption

0 = 0’ By Lemma q = subsumes —>[)
O ctx Assumption
O’ ctx Assumption

w ||| F [B]A =+ @A By Lemma (]ﬁ,' leads to isomorphic types (ground)[)

F’.2 Statement

Theorem F.6 (Soundness of algorithmic subtyping). Given a well-formed algorithmic context © and a well-
formed complete context Q:

s fOFP<TQHO, 0" — Q, Pground, [B]Q =Q, ©F Ptypet, and © - Q type™,
then |©| P <* [Q]Q.

s IFOFN< MO, 0" — Q, M ground, [BIN =N, © - N type, and © - M type~,
then |©| F [QIN <~ M.

Proof. By mutual induction on the derivation of @ - P <* Q 4©".

* Case
- <TArefl
@1_,0(,@]2 - CXS o @[_,(X,@R
o €UV(||®1, «, Or||) By definition of [-]—
|OL, &, O]l F « type" By[Twfuvar
[©r, &, Ol F o <* o By |<ZDrefl
w |0, a0k F o < [Q]x By Lemmaw (IApplying a context to a ground type[)
* Case +
O - Ptype P ground
<*FAinst
O8Ok P< & 1O, &=P 0Ok
O, a=P,0g — Q Assumption

Q=01,2=0Q,0x Inversion (must have instance of |Csolvedguess)
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lOLfl=P="Q

[Q]& = [Qr,& =Q,Qrl&

=Q
”@L) &) ®R|| P §+ Q
1Q] FP<T[Q]&

*Case g M < NHO

"

Substituting for Q

By definition of [—]—

By Lemma (]Declarative subtyping weakeningb
Substituting using above equations

O'FN< [@IMH40”

OF IN<T IM40”

IN ground
OIIM = M

We have:

OFM < NHO’
O ctx

N ground
BOIM =M

Therefore:

O’ ctx
e — 0O’
[@’'IM ground

We have:

O'FN< [@IMH40”

O’ ctx
[@'IM ground
O®'IN =N
Therefore:

e — "

Assumption
"

Subderivation
Assumption

By definition of ground
By definition of [—]—

By Lemma qugorithmic subtyping is W'.f.l)
"

"

Subderivation
Above
Above

By Lemma (]Applying a context to a ground type[)

By Lemma ¢A1gorithmic subtyping is w.f.l)

Now show the antecedents of the induction hypothesis applied to the first premise of the algorithmic rule:

(@D) O ctx

2 Q ctx

3) OFM < NHO’
0" —Q

4@ e — 0

5) N ground

(6) OIM =M

) ©F N type~

(€) O+ M type~

We conclude:
18] F [QIM <~ N

Above

Assumption

Subderivation

Assumption

By Lemma QContext extension is transitivel)
Above

Above

Inversion on assumption |l

"

By i.h. applied to first premise, using (1-8)

61



Shlow the antecedents of the induction hypothesis applied this time to the second premise of the algorithmic
rule:

9 O’ ctx Above
(10) Q ctx Above
an O'FN < [®'IM -4©O" Subderivation
(12) e —QO Assumption
(13) [@'IM ground Above
(14 [@'IN =N Above
(15) O’ N type~ By Lemma Context extension preserves w.f.
(16) O+ M type~ By Lemma Context extension preserves w.f.

We conclude:

1] - [QIN
[CH R

0'1M By i.h. applied to second premise, using (9-16)

oM By Lemma (Applying a context to a ground type)

Q] By Lemma (I—> leads to isomorphic types (ground)l)
Q] By Lemma (Equality of declarative contexts)

< [
< [
< QM
I®]FN < [QIM

Applying the declarative rule:

O] FIN <" [[Q]M By |<* Dshift]
= O] - IN <" [Q]IM By definition of [—]—

©Case g o N< MO«

O ctx Assumption
(D) 0, x ctx By
QO ctx Assumption
(2) Q, o ctx By
3 O,aFN<"M-H0O’,« Subderivation
0 —Q Assumption
(€] O, — Q,x By
Yo. M ground Assumption
©) M ground Definition of ground
6) [OIN =N Assumption
©F N type™ Assumption
(7) O,x - N type™ By Lemma (]Term well-formedness weakening[)
O F V.M type™ Assumption
(8) O,x+ M type~ Inversion
19, x|| F [Q,]N <~ M By i.h., using (1-8)
19, x|| F [QIN <~ M By definition of [—]—

= 9] F [QIN <~ Vo.M By [<* Dforallr
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*Case g o [R/N< MA4O,&[=P] M #Va. M/

OF Va.N < M 10’

Apply well-formedness to the premise:

@) O,ak [&/aJN <~ M H40’,&[=P] Subderivation
O ctx Assumption

2) 0, & ctx By|waunsoIvedguess|
3 M ground Assumption

[BlVoe. N = Vae. N Assumption
4 [®IN =N By definition of [—]—

O, &[=P] ctx By Lemma (]Algorithmic subtyping is w.f.|), using (1-4)

"

0,8 — @, &[=P

Now apply the inductive hypothesis:

5) 0, & ctx Above
Q ctx Assumption
O’ P type* Inversion
P ground "
0 —Q Assumption
QF P typet By Lemma |D_4| (IContext extension preserves w.f.l)
) Q,&a=P ctx By |Cwfsolvedguess|
7 O,k [&/JN <~ M H40’,&[=P] Subderivation
0 —Q Assumption
(8) e, &a=P] — Q,&="P By|CsoIveguessl/ |Cso|vedguess
©) M ground Assumption
OVa.N = Va. N Assumption
[BIN =N By definition of [—]—
(10) O, &][&/xIN = [&/x]N O, &ctx, so & ¢ EV(0)
(1n OF Voa. N type™ Assumption
(12) O,x - N type~ Inversion (Twfforall))
19, &|| F [Q,& =Pl[&/xIN <~ M By i.h., using (5-12)
0]+ [Q,& = PI[&/aN <~ M By definition of ||—||
«x ¢UV(O') Since « ¢ UV(O) as « fresh
[Q,& = Pl[&/«]N = [Q][P/&][&/xIN By definition of [—]—
= [Q][P/&][P/a]N By composition of substitutions
= [Q][P/«][P/&IN ©’F Ptype" and o ¢ UV(®’'), so o« ¢ FUV(P).
Also P ground, so & ¢ FEV(P).
= [Q][P/x]N Since & fresh, & ¢ FEV(N)
= [([Q]P)/«][QIN  Since context application does not replace
universal variables
18] F [([QIP)/d[QIN <~ M Substituting for [Q, & = P][&/«]N
O’ P type* Above
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P ground Above
|©|| - P type™ By Lemma (]Completing context preserves w.f.[)
|®] P type™ By Lemma Equality of declarative contexts)
18] + [Q]P type* By Lemma IApplying a context to a ground type|)
O] F V. [QIN <~ M By

- 19| F [QlVa. N <~ M

e Case @}_QS_FP_'@/

O'FEIN< MH40”

By definition of [—]—

OFP-N< QM-0”

Q — M ground
@O](P—-N)=P—N
OFP — N type~
OFQ— M type

We have:

OFQ<TPHO’
O ctx
Q ground
[P =P

Therefore by well-formedness:
O’ ctx
e — 0
We have:

O'F[OIN<"M-H40"
O’ ctx
M ground
©'][@'IN = [@'IN

Therefore by well-formedness:

e — 0"

Assumption
Assumption
Assumption
Assumption

Subderivation
Assumption

Since Q — M ground
By definition of [—]—

By Lemma qugorithmic subtyping is w.f.l)
"

Subderivation

Above

Since Q — M ground

By Lemma (]Context application is idempotenti)

By Lemma qugorithmic subtyping is w.f.l)

Applying the induction hypothesis to the first premise:

" —Q

e — Q
O+ Q typet
OF P typet

Q ctx
[©[ - Q <" QP

Assumption
By Lemma D.3| (Context extension is transitive[)

Inversion (Twfarrow|)

"

Assumption
By i.h. applied to first premise

Applying the induction hypothesis to the second premise:

0" — QO

Assumption
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OF N type™ Inversion tl

OF M type~ "
Q ctx Assumption
9] FIQIEe'IN <~ M By i.h. applied to second premise

Rework the second declarative judgment:

0 —Q Above
18] F [QIN <~ [Q][@'IN By Lemma d—> leads to isomorphic types|)
<M By Lemma Declarative subtyping is transitive|)
©] F[QIN <~ M By Lemma Equality of declarative contexts)

Finally, apply the declarative rule:

[O|FIQP=[QIN< Q—=M By

= 8] F[QI(P—=N) < Q—M By definition of [-]—

e Case + / / / + "
OFrQ<tP4O O FHEIP<tQHO ,
er P —T010"

Symmetric to [<*Ashift | case.

G’ Completeness of subtyping

G’.1 Lemmas for completeness

Lemma G.1 (Completion preserves w.f.). If @ctx, © - A type®, and ® — Q, then ||©| - [Q]A type*.

Proof. Corollary of Lemma (Completing context preserves w.f.).
By © - A type™, all existential variables in A will appear in ©. By ® — Q, these will also all appear in
Q as ground types. Therefore [Q]A must be ground. Then:

©F A type*  Assumption
O [Q]A typet By Lemma (]Applying context to the type preserves w.f.l)
[QJA ground Above
9] F [QJA type* By Lemma (]Completing context preserves w.f.[)

O

Lemma G.2 (Extension solving guess). If ©;,&,0r — Qr,& = Q,Qg and [Q(]O - P =" Q, then
@L,&:P,GR — QL,&: Q,QR.

Proof. By structural induction on Og.

* Case Op = -
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O, & — Qr,&=Q Assumption

0, — Qp Inversion (Csolveguess)

QO FP="Q Assumption
o OLE=P —»0L&=Q  ByCaohedgues

* Case O = O,

O1,&,04, 0 — Qr,& = Q,Qf,« By structure of O, must have instance of

Qe FP="Q Assumption
O, 2,0, — Q,&=0Q,04% Inversion
@L,&:P,@{Q — QL,&:Q,Q{Q By'lh
= OL,&=P0ka — Qr,&=Q,Qf « By|Cuvar

A

* Case O = Oy, 3:

O, &, @1'2»6 — Qr,2=0Q, Q,Q,(g =R By structure of O, must have instance of

Csolveguess

QO FP="Q Assumption
O, 8,0, — Qr,8=0Q,04 Inversion Ib

O, &=P0; — Qr,&=Q,04 By i.h.
w O, &=P0} B — Qr,&=Q,04 B =R By[Csolveguess

* Case Op = 04,3 =R:
®L,&)®]/2)ﬁ =R — QL>&: Q,Q]’z,/{?\) =S
[QL)&: Q)Q]IQ](GL)&)G{Q) FR £+S
[Q]_]@LFPEJFQ
O, 8,0, — Qr,8=0Q,04

@[_,&ZP,@{; — QL,&:Q,Q{Q
[QL)&: Q)Q{Q](@L)&:P)@]/z) FR="S

. O1,8=P0O,,B=R — Q,8=0Q,Q,,B=S

Lemma G.3 (Context extension substitution size). If:

1. Octx
2. OF Atypet
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3.0 — QO
4. Qctx

then |[Q)[OIA],, = [[QIA,,

Proof. Corollary of Lemma [F.4] (— Ieads to isomorphic types) and Lemma (Tsomorphic types are the]
[same size]).

O A type* Assumption
[QJA ground  Q completes all free existential variables in A

e — 0 "
18] F [Q]B]A =*[Q]A By Lemma@ (I — leads to isomorphic types[)
O ctx Assumption

O [B]A type* By Lemma Applying context to the type preserves W.f.l)
18] F [QI[B]A typet By Lemma Completion preserves w.f.)

Q ctx Assumption
18] F [QJA type*t By Lemma Completion preserves w.f.)
= [Ql[BIA], = [[QJAly, By Lemma B.6| (Isomorphic types are the same sizel)
O
Lemma G.4 (Context extension ground substitution size). If:
1. Octx
2. OF Atype*
3. [B]A ground
4.0 — Q
5. Qectx
then [[O]Al, = [[QJA[,.
Proof. Corollary of Lemma [G.4] (Context extension ground substitution size)).
[[Q] [@]AlNQ = |[Q]A|NQ By Lemma m [somorphic types are the same size|)
= [B]Al, = [[QJAl,, ByLemma pplying a context to a ground type)
O

G’.2 Statement

Theorem G.5 (Completeness of algorithmic subtyping). If ©ctx, ®© — Q, and Q ctx, then:

* If O] F P <t [Q]Q, ©® F Ptype™, ® - Qtype™, P ground, and [B]Q = Q, then 30’ such that
OFP<* Q-0 and® — Q.

s IfO| F[QIN < M, ©® - Mtype, ©® - Ntype , M ground, and [O]N = N, then 30’ such that
OFN< MO’ and ® — Q.
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Proof. By mutual rule induction on the declarative judgment weighted by the lexicographic ordering of (|P|y,,
NPQ(P) + NPQ(Q)) in the positive case where we have ||@| P <* [Q]Q, and (M|, NPQ(N) + NPQ(M))
in the negative case where we have ||©] - [Q]N <~ M.

NQ?

Firstly consider the case where B = &. Suppose [Q]& = Q’:

0O =0.,&,0r Since © I~ & type™ and [B]& = & by assumption
Q=0.,2=0,0r Since [Q]& = Q’
Qr F Q' type™ Inversion on Q ctx
Q’ ground "
O, &0k — Qr,2a=0Q',0x Assumption
O — Qr Inversion (must have instance of |
O+ Q' typet By the rules defining — , each uvar in Q must appear
in @]_
O FP<tQ’ Assumption
P ground "

FUV(P) C UV(©r)
FEV(P) C EV(Oy)
O+ P type"
Or F P type"

w  O,80gFP<*&10;,&=P06g

Since [|®]| P <* Q' and O F Q' type™
FEV(P) = @ since P ground

Assumption

By above three equations

my[= g

B8] FQ’ <P By Lemma (]Symmetry of positive declarative subtyping[)
|e|+P="Q’ Since we have both the component judgments
Qe FP="Q’ Since |©| F P =" Q’, O, I- Ptype*, and O - Q' type*

Qe FP="Q’
®L)&)@R — QL»&: Q/»QR
= @L,&:P,GR —)QL,&:Q/,QR

Now consider the cases where B # &:

Since ©1 — Q, O F Ptype", and ©1 + Q' type™
Above
By Lemma (]Extension solving guess[)

" Case o) - atypet
< Drefl
1O F o < [Qlax
18] F o type™ Subderivation
o € UV([Q]O) Inversion
x € UV(O) By definition of [—]—
© = 0O, «,0r Since o € UV(O)

w O, o,0r F o<t a0, a O BYW
- O, ,0r — Q Assumption

" Case oM < N

IO FN < [QIM

[©[l FIN <" [Q]IM

©F N type"
O+ [M typet

Assumption
Assumption
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IN ground
OIIM =M

18] F[QIM <~ N
O ctx
OFM type~
©F N type™
® —Q
Q ctx
N ground
OIM =M
OFM < N-HO’

e — QO

®’ ctx
e — 0
[@’'IM ground

O] F N <~ [QIM
©] FN < [QOIM
|9 F 1M =" [QIM

@' N type~

1O’ =N type™
®'F M type~

10| F [QJM type™
@' [@'IM type~
|©] F [@IM type™
@] FN < [0 IM

19| F [QIN <~ [@']M

®’ ctx
@' N type~
@' [0'IM type~
0 —Q
Q ctx
[@']M ground
©IN=N
1©Mly, = l[QIM,
= Nl
<|INlyo

O'FN< [OIMH40”

0" — QO
OF [N <+ | M40"

Assumption
Assumption

Subderivation
Assumption

Inversion (Twfshift ]

"

Assumption

1

By definition of ground

By definition of [—]—

By i.h. (the type size of the ground side type in the declarative

judgment has decreased)
1

By Lemma (]Algorithmic subtyping is w.f.[)
"

"

Subderivation
By Lemma D.2| (Equality of declarative contexts])
By Lemma|F.5 (]—) leads to isomorphic types (ground)|)

By Lemma D.4| (Context extension preserves w.fJ)

By Lemma [F.1| (Completing context preserves w.f.[)

By Lemma |D.4| (Context extension preserves w.f.I)

By Lemma Completion preserves w.f))

By Lemma Applying context to the type preserves w.f.|)
By Lemma [F.1| (Completing context preserves w.f))

By Lemma B.7| (Declarative subtyping is transitive))

By Lemma (]Applying a context to a ground type[)
Above

Above
Above
Above
Above
Above

By Lemma (]Applying a context to a ground typel)

By Lemma Context extension ground substitution sizel)
By Lemma B.6| (Isomorphic types are the same size])

By definition of ||,

By i.h. (the type size of the ground side type in the declarative

judgment has decreased)
"

By[<FAshift]
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* Case 19 o F[QIN< M

<*Dforall
6 - [OIN = vau M =2

© ctx
©F N type™
OF Vo.M type~
0 —Q
QO ctx
Yoa. M ground
[BIN =N

19, x|| F [QIN <~ M
19, x|| F [Q,dN <~ M
0, x ctx
O, N type™
O,k M type™
O,0 — Q,x
O, x ctx
M ground
O, x]N =N
O, aFN<"M-0”

0" — Q,«

0" =0«
e — QO
O, aFN<" M40, a
OFN< Vo.M -0’

P Case g Piypet |0+ (@

Assumption
Assumption
Assumption
Assumption
Assumption
Assumption
Assumption

Subderivation

By definition of [—]—

By |Cwfuvar

By Lemmal|A.2| (Term well-formedness weakening[)

Inversion qufForaII[)

By |Cuvar|

By‘Cquvar

By definition of ground

By definition of [—]—

By i.h. (the type size of the ground side type in the declarative
judgment is the same and the total number of prenex

quantifiers has decreased by 1)
"

Inversion ll

"

Substituting for ©"”

Byl

I[P/xIN <~ M’

O] F [QVa. N < M’

<= Dforalll

Proof by induction on the number of prenex universal quantifiers in M’:

— Case n = 0 (base case). Let M = M":

O ctx
e —Q

Q ctx
||| F P type*
OF P typet

OF Va.N type™

Assumption

Assumption

Assumption

Subderivation

Since P ground, this reduces to
FUV(P) C UV(®), which holds since
[—]— preserves uvars and FUV(P) C [Q]©
(the latter holding by ||©]| - P type™).

Assumption
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O,x - N type~ Inversion (Twfforall)

O FM type~ Assumption
B]Voe. N = Vae. N Assumption
[GIN =N By definition of [—]—
8] F [Q][P/«IN <~ M Subderivation
[Q,&=PlO, &+
[Q,& =Pl[&/«(]N <~ M Where & is fresh
O, & ctx By|waunso|vedguess|
O,&F [&/«]N type~ Each application of |wauvar involving «

becomes an application of |[Twfguess|
involving &, and & € EV(O, &)

0,2 F M type~ By Lemma ¢Term well-formedness weakeningl)
0, — Q,&a="P By|Csolveguess|

Q,2=P ctx By‘CWfsolvedguess and
Lemma D.4 (Context extension preserves w.L))
M ground Assumption
O, &l[&/xIN = [&/x]N O, & can not solve & since ©, & ctx, and [@]N = N
O,&F [&/a]N <~ M H40O” By completeness i.h. (the type size of the ground

side type in the declarative judgment is the same,
but the total number of prenex quantifiers has
decreased by 1)

0" — Q,a=P "

By inversion on ®” — Q,& = P, have @' — Q and one of the following cases:

Case " =@’,& =Qand |@'|F Q=" P:
O,&F [@/a]N <~ M H4O',& =Q Substituting for ©”

= OFVa.N< M 40O’ By [<*Aforalll
= e —Q Above

Case ©” =©’,& and « ¢ FUV(N):
O,&F [&/0]N <~ M H4O’,& = x Where x represents “not solved”

= OFVa.N <" M0’ By [<*Aforalll

= e —Q Above

- Case M’ has n+1 prenex universal quantifiers, i.e. M’ = V3. M where M has n prenex universal

quantifiers:
16, B] F [QIVa.N <~ M Inversion
19, B F [Q,BIVa. N <~ M By definition of [—]—
0,p ctx By |Cwfuvar|
0,p - Va. N type~ By Lemma A.2| (Term well-formedness weakening[)
0,B M type~” Inversion (IwaForaIII)
0,8 — Q,p By |Cuvar|
Q,B ctx By|Cwfuvar
M ground By definition of ground
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O, BIVe. N = Va. N By definition of [—]—

O, FVa.N< M 40" By i.h. of induction over prenex universal quantifiers
Q" — Q,p 7
e"'=0",3 Inversion li
@ —0 4

O,pFVa.N< M40,  Substituting for ©”

OFVa.N < VB.M 4O’ By|<*Aforallr

*Case g Q<t QP [O]FQIN< M

[© FIQIP = N) < (Q = M)

Q — M ground Assumption
@B](P—-N)=(P—=N) Assumption
OFP—N typet Assumption
OFQ—> M typet Assumption
8]+ Q < [Q]P Subderivation
O ctx Assumption
OF Q typet Inversion ID
OF P typet "
® — Q0 Assumption
Q ctx Assumption
Q ground By definition of ground
[BP = P By definition of [—]—
OFQ<TPHO’ By i.h. (the type size of the ground side type of the
declarative judgment has decreased)
e —Q "
0 — 0O By Lemma qEquality of declarative contextsl)
@/ ctx 1
19| FIQIN <~ M Subderivation
O] FQIN <M By Lemma |ﬁ| (Equality of declarative contextsl)
©' N type~ By inversion (Twfarrow) and
Lemma D.4| (Context extension preserves w.f.[)
9] - [Qle'IN = [Q]N By Lemma [F.4 (]—) leads to isomorphic types[)
Q'+ [©'IN type~ By Lemma pplying context to the type preserves w.f.[)
0] - [QI@IN type~ By Lemma Completion preserves w.f.

l©]| F [QIN type~ By Lemma|G.1| (Completion preserves w.f.
©FM type~ Inversion (Twfarrow])
'+ M type~ By Lemma [D.4| (Context extension preserves w.f.)
@]l F M type™ By Lemma QCompleting context preserves w.f.|)
197] F [QIEe'IN <~ M By Lemma (]Declarative subtyping is transitivel)
0’ ctx Above
Q'+ [©'IN type~ Above
O'+M type~ Above
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)

)

e —Q
Q ctx
M ground
[©][0'IN = [@'IN
O'FEIN< M40”

0" —Q

O@FPSN< Q—-MH0”

*Case g -Q <t [P

Above

Above

Since Q — M ground

By Lemma (IContext application is idempotenq)
By i.h. (the type size of the ground side type of the

declarative judgment has decreased)
1

oy [T

|®] F[QIP <" Q

O] - [QITP <~ 1Q

O+ TP type~

O+ TQ type
TQ ground

[©)TP = 1P

O] Q<" [QJP
O ctx
OF Q type"
OF P typet
e —Q
Q ctx
Q ground
[@P =P
OFQ<*PHo
e —Q
Q' ctx
® — 0O
[@']P ground

[©f +[QJP <7Q
|+ QP <7 Q
Q'+ P type*
|©| F[©TP =" [Q]P

Q' [@']P typet
|©'| F [@']P type™"
1©'|| - [QIP type™

O’ Q typet
1©'[| = Q type”
1©] F[©1P <t Q

O F[e1P <" [Q]lQ
Q' ctx

Q'+ [O']P type*

O’ F Q type"

Assumption
Assumption
Assumption
Assumption

Subderivation
Assumption

Since © - TQ type*
Since © + TP type™
Assumption
Assumption

By definition of ground
By definition of [—]—
By i.h.

"

By Lemma (]A.lgorithmic subtyping is w.f.[)
1

"

Subderivation

By Lemma [D.2| (Equality of declarative contexts)

By Lemma m Context extension preserves w.f.[)

By Lemma — leads to isomorphic types (ground)[)

By Lemma
By Lemma
By Lemma

pplying context to the type preserves w.f.I)
Completing context preserves w.f.[)
Completion preserves w.f.)

By Lemma m Context extension preserves w.f.[)

By Lemma [F. 1/ (Completing context preserves w.f.)

By Lemma W (Declarative subtyping is transitivel)

By Lemma (]Applying a context to a ground type|)
Above

By Lemma Applying context to the type preserves w.f.[)
By Lemma |D.4{ (Context extension preserves w.f.)
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0 —Q

Q ctx
[@']P ground

@©1Q =Q

1©/1Ply, = I[QIPl,

1Q1Qly,
<QI1Qly

®' F[OIP < Q40"

= e — Q0
= OFHTP < TQ 40"

H’

Above
Above
Above

By Lemma (]prplying a context to a ground type|)

By Lemma (Context extension ground substitution size|)
By Lemma B.6| (Isomorphic types are the same size)

By definition of ||y,

By i.h. (the type size of the ground side type of the declarative

judgment has decreased)
1

By [<TAshift])

Determinism of subtyping

Lemma H.1 (Algorithmic subtyping is deterministic).

* fOFP<T QO] and ®+ P <™ Q 4 ©), then ©7 = 0).

* fFOFN< M-H0;and®F N <~ M -0}, then ©] = 0).

Proof. By rule induction on the first hypothesis.

* Case

@]_,(X,@R F OCSJr OC"@L,OC,GR

O, o, Or F o <" ot 40¢, , Or

O, ,Or - ax <t ot 10}

= @L,(X,@R = @é

<= Arefl

Assumption
Assumption

By the structure of «, the instantiation above
is the only possible instantiation of <*

P ground

<= Ainst|
@L)&>®R|_P§+&_|@L)&:P)@R

Or,&,0rFP<T210r,& =P,06r

O, &,0r FP<tR40)

w  O,&2=P0g =0}

Assumption
Assumption

By the structure of &, the instantiation above
is the only possible instantiation of <*
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e Case B , ) . )
®FM< NH4@' ©'FN< [@IMH© _
OF IN<' IM10"

OFIN<FIM-HO" Assumption
OF IN<tT IMH40) Assumption

By1 the structure of | N, the derivation of the second hypothesis must end with an application of the [<*Ashift )
rule.

OFM< NHO’ Subderivation
OFM < NHO) Subderivation
0 =0} By i.h.

O'FN< [®'IM 40" Subderivation

0 FN < [@,)IM 404 Subderivation

©+FN<"[@IM-0} Using® =0}
= 0" =04 By i.h.

*Case g o [B/N< MA4O,&[=P] M#YB.M
OFvVa.N< M40

<+ Aforalll

OFVa.N< M H0O’ Assumption
OFVYa.N < M-0) Assumption

By the structure of V. N, and since M # V3. M/, the derivation of the second hypothesis must conclude

with an application of [<* Aforalll

O,&F [&/JN <~ M HO',&[=P] Subderivation
©,&; F [&2/x]N <~ M -0}, &, [=P,] Subderivation
O, F [&/a]N <~ M 40}, & [= P,] Renaming the free existential variable
@', &[=P] = ©%, & [= P,] By i.h.
= @', &[=P] = O35, &; [= P2l Substituting back the original name (& = &3)

e Case — /
O,aFN< M40«

<= Aforall

OFN< Va.M10’ <™ Aforall

OFN< Va.M -0’ Assumption
OFN< Vo.M -40; Assumption

By the structure of Vo. M, the derivation of the second hypothesis must conclude with an application of
O,aFN<" M40« Subderivation
O,aF N <" MH0Oj,a«  Subderivation
O ,u=0)« By i.h.
= ©'=0) By above
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*Case gL o<t pH4O O FOIN< M40

OFPN< QMH0”

OFP—-SN< Q—->M-40” Assumption
OFP—-N< Q- M-0) Assumption

By the structure of P — N and Q — M, the derivation of the second hypothesis must conclude with an

application of

OFQ<TPHO’ Subderivation
OFQ<"PHO; Subderivation

Q' =0; By i.h.
O'FOIN< M-H40" Subderivation
O, F[OIN< M-406Y Subderivation
@' FOIN< M-406Y Using ©' = ©}

(= 0" =07 By i.h.

* Case + / / ’ + "
OFrQ<*PH4O ©FEIP<'QHO ,
ST 1010

OFTP < TQ1©” Assumption
OFTP < TQ 404 Assumption

By the structure of TP and TQ, the derivation of the second hypothesis must conclude with an application of

OFQ<TPHO’ Subderivation
OFQ<TPHO; Subderivation
©' =0} By i.h.

'+ [O'P <t QH10”  Subderivation

©)F[BiP <" Q404  Subderivation

O'FOIIP< QH40F Using®' =0)
= 0" =07/ By i.h.

I’ Decidability of subtyping

I''1 Lemmas for decidability
Lemma I.1 (Completed non-ground size bounded by ground size).
* IfOFP <" Q-0 Octx, P ground, and [O]Q = Q, then ®1Qlye < IPlyo-
s IfOFN < M A0/, Octx, M ground, and [O]N = N, then \[@’]NINQ < Mlgor
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Proof. Proof sketch by rule induction on algorithmic subtyping judgment. The justification here for using
the i.h. omits the reasoning for why the premises of well-formedness must hold for the subderivations if we
know that they hold for the conclusion. This reasoning should be identical to that in Lemma E.2]

subtyping is w.£.).

* Case

<= Arefl
O, x,Or F o<t oA O, ,0r =

[Or, &, Orlax = By definition of [—]—
w O, «, @R]ocINQ < |oc|NQ Since the types are equal

* Case O - Ptype™ P ground

<= Ainst|
@L,&,G)RI—P§+&—|@L,&:P,@R

O, & =P,0Ogl& =P By definition of [—]—
i[O, & =P, @R]&\NQ < IP\NQ Since the types are equal

*Case g M < NHO  O'FN< [OIMHO”

<*Ashift
GN—J,NSJF,LM_{@H
[©'IM ground By well-formedness on the first premise
O’ ctx "
e — 0" By well-formedness on the first and second premises
@// CtX 1
®’ ctx Above
[©’'IM ground Above
0 — 0" Above
Q" ctx Above
[© ]M|NQ = |[®@" ]M\NQ By Lemma (]Context extension ground substitution sizel)
OFM< NHO’ Subderivation
|[®”]M|NQ < |[®’]M|NQ Since the sizes are equal
<INlyo By i.h.
w  [[@"] My, <IINI, By definition of ||y,

*Case g v N< M40«

OFN< Ya.MH0’

O,aFN < " M-H0O’,« Subderivation
@, &N, <My,  Byih.
@', x]N = [@'IN By definition of [—]—
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IMINQ = |Va. MINQ By definition of |—|NQ
= @' }NINQ <|Va. MINQ Substituting above

* Case - / /
O,aF [&/a]N <" MHO',&[=P] M #Va. M

<= Aforalll

OF Ve N M 10’ [ Aforall

Q,&F [&/0]N <" M -H40',&[=P] Subderivation
I®', & [= Pll[&/«INIy, <IMly, By i.h.
Case o« ¢ FUV(N):
@, &[= Pl][&/«]N = [©']N By definition of [—]—
[©'INlyo <My Substituting above
= [[©"1Vee. NIy, <IMlygq By definition of ||,
Case o € FUV(N):
O ,&a[="P] ctx By Lemma (]Algorithmic subtyping is w.f.[)
[/, & [= P]][&/«]N ground "
(@,&[=P])=(©,2a=P) o € FUV(N) so & € FEV([&/«]N). Since & is

not ground, the context must solve & to make
@', & [= Pl][&/«]N ground.
P ground Inversion (Cwfsolvedguess)

[@',& = Pl[&/«IN = [©'][P/&][&/xIN By definition of [—]—
=[© ][P/ a]N By definition of [—]—
= P/ 1IN Since the type being replaced is a universal variable
= [P/ «][@']N Since P is ground
1©/1Vet. Nl

[© | By definition of ||,
|

\/\ Il

P/oc][ ]N \NQ The additional substitution cannot decrease
the size of the type
= |©’,& = Pl[&/aIN|,, Above
<IMlyo Above
= [®'IVe. Ny <Ml By transitivity of <

PCase grQ<trPHe  ©FHOIN< MO

— <*A

R

OFQ<TPHO’ Subderivation

1©'Ply, < IQlyq By i.h.

[@']P ground By w.f. applied to first subderivation
e — 6" By w.f. applied to second subderivation
|[®/]P|NQ =[O //]p‘NQ By Lemma (]Context extension ground substitution sizel)
OFOIN< M-HO" Subderivation

®"][@"INy, <IMlygo By i.h.
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[©"1[@"IN]y, = [[@"IN], By Lemma (]Context extension substitution size[)
®"](P — N)lyo = [[©"]Ply, +1[©"IN|, + 1 By definition of ||y,
= |[@']P|y, + [©"1[@'IN|, + 1 Substituting above
<IQlyo + My +1 Using above inequalities
= |[@"](P — Ny, <1Q — Mly, By definition of ||,

e Case + / / / + "
OFQ<tP4O @ F@IP<TQHO ,
T P00

Symmetric to |<*Ashift || case.

I'.2 Statement

Lemma I.2 (Decidability of algorithmic subtyping). There exists a total order C on well-formed algorithmic
subtyping judgments such that for each derivation with subtyping judgment premises A; and conclusion B, each
A compares less than B, i.e. Vi.A; C B.

Proof. The ordering is the same lexicographic ordering we used earlier in Lemma [B.7] (Declarative subtyping]

and Theorem [G.5] (Completeness of algorithmic subtyping):
* (IPlyo>
* (IM]

NPQ(P) + NPQ(Q)) for positive judgments @ - P <t Q 10’
NPQ(M) + NPQ(N)) for negative judgments ® - N <~ M - O’

NQ)

In this ordering, NPQ(A) is the number of prenex universal quantifiers in the type A and |A|, is the size
of the algorithmic type A defined in Lemmal [I.1| (Completed non-ground size bounded by ground size) (N.B.
universal quantifiers do not contribute to this size).

Sketch of this proof: We will prove by rule induction that each subderivation compares less than each
conclusion for each derivation of the algorithmic subtyping judgment. We will assume the following ad-
ditional statements about the judgment being proved in the rule induction (the same assumptions used in
Lemma (Algorithmic subtyping is w.t.))):

* For positive subderivations * For negative subderivations
OFP<TQ-HO" OFN< M-H0O":
1. Octx 1. Octx
2. P ground 2. M ground
3.01Q=Q 3. [BIN=N

The subtyping algorithm should first check that these well-formedness assumptions hold for the judgment
in question. By the same argument as used in Lemma (Algorithmic subtyping is w.f.), we can show that
they are preserved by the algorithmic subtyping rules from conclusion to subderivations.

* Checking the well-formedness of a type is decidable:

- Typing contexts are finite, so checking UV and EV is decidable.
— There is exactly one type well-formedness rule to apply for each type.

— The application of each rule reduces the natural size of the type (same as ||, except universal
quantification contributes to this size).
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* Checking whether a type is ground is decidable, since types are finite.

* Checking context well-formedness is decidable.

Checking type well-formedness is decidable.
Checking whether a type is ground is decidable.

There is exactly one rule to apply for each context.

The application of each rule for each non-empty context reduces the number of items in the
context by 1.

* Applying a context as a substitution to a type is decidable since each rule decreases the lexicographic
order (number of free existential variables, number of items in the context). This follows from the
requirement that solutions to existential variables are ground.

The subtyping algorithm should then proceed to try and apply algorithmic subtyping rules based on the
structure of the types until there are no more subderivations to prove. The structure of the types dictate a
single rule to apply at each stage. We now sketch a proof that each derivation of an algorithmic subtyping
judgment is finite. As with Lemma (Completed non-ground size bounded by ground size)), we skip
justifications for why the same assumptions used in Lemma (Algorithmic subtyping is w.f.) continue to
hold.

The key idea is that at each step in the proof, the subderivation either fails or the algorithm determines
that it is derivable. If the first subderivation fails, the algorithm should terminate in a failure state, and
therefore we do not need to prove anything about the second subderivation. This allows us to use the first
subderivations of the shift rules in the proof that the second subderivations are smaller than the conclusions.
We have omitted stating this reasoning in each of the proof cases.

* Case

<= Arefl
@1_,0(,@]2 - O(S+ o @[_,(X,@R —

No algorithmic subtyping subderivations.

* Case Or - Ptype™ P ground

<> Ainst|
@L,&)QRFPSJF&_'@L)&:P,@R

No algorithmic subtyping subderivations.

* Case — I I — I "
OFM < N-HO O'FN< [@IMHO
= = <= Ashifi
®|_~LN§+~LM_{®H

INlyo = [INlyo —1 By definition of ||,
<[INlyo

Therefore the first subderivation compares less than the conclusion.

OFM< NHO’ Subderivation
®"TMlye <INlyo By Lemma qumpleted non-ground size bounded by ground sizel)
<[INlgo By definition of ||,

Therefore the second subderivation compares less than the conclusion.
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*Case g v N< M40«

IMlyo = IVoe. Ml By definition of ||,
NPQ(M) < NPQ(Vx. M) The LHS has one fewer prenex quantifier
NPQ(N) + NPQ(M) < NPQ(N) + NPQ(Va. M)

Therefore the subderivation compares less than the conclusion.

*Case g 51 R/N< MO, &[=P] M #Vo. M’

OFvaN< M0’

IMlyo = IMlgo
NPQ([&/axIN) < NPQ(Vx.N) The LHS has one fewer prenex quantifier

Therefore the subderivation compares less than the conclusion.

* Case + 1 ’ ’ - "
OrQ<'PHO O F[@OIN< MO
OrPoN< QM 10” =~ Aarrow

IQlyo = 1Q = My, — IM[, —1 By definition of ||,
<|Q = My,

Therefore the first subderivation compares less than the conclusion.

Mlyo = 1Q = M|, —IQly, —1 By definition of ||,
<1Q — My,

Therefore the second subderivation compares less than the conclusion.

*Case g o< pH4O O FEOIP<TQHO”

<*Ashift
@'_TpngQ_|®//
|Q|NQ = ITQINQ —1 By definition of |—\NQ
<MQlyq
Therefore the first subderivation compares less than the conclusion.
O'FQLTPHO’ Subderivation
I®IPlyo <1Qlyo By Lemma (ICompleted non-ground size bounded by ground size[)
<ITQlyo By definition of ||y,
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Therefore the second subderivation compares less than the conclusion.

J’ Isomorphic types
Lemma J.1 (Isomorphic environments type the same terms). If ©® + ' = T, then:
e IfO;"'v:Pthen 3P’ such that ®© - P =" P and ©;T' Fv: P’
e IfO;T't:N then IN’'such that ® - N =" N’ and ©;T"" - t: N’
* IfO,TFs:N>Mand ® N =" N/, then 3M’ such that @+ M =~ M’ and ©;T' s : N’ > M.

Proof. By mutual induction on the checking, synthesis, and spine judgments.
We first define notions of the sizes of terms and spines:

le| | The size of the term e

|s| | The size of the spine s

Ix| =1 HtH = [l +1
Ax.t] = [t| + 1 [Ac.t] =[t|+1
[return v| = [v| + 1
llet x : P =f(s);t]| =|f] +|s| +|t| + 1 llet x = f(s);t] = |f| +|s| + [t| + 1
le] =1 Is, v = Is| + [v] + 1

We perform the induction using the following metric on judgments:

|T| | The size of the judgment |

|©;TFv:P 40| = (If[,0)
|©;TFt:N 40| = (|t|,0)
|©;TFt: N> M0’ = (]t|, NPQ(N))

* Case | .pcrp

@;FI—X:P

x:Perl Premise

OFT =T’ Assumption
@Y x:P' eTl’ Inversion li
w OFP="P "

w O Fx: P’ Byand D 82



* Case O;Nx:PFt:N

DAab
@;FF)\X:P.t:P—)N

OrT =T Assumption
OrP="P By Lemma qDeclarative subtyping is reﬂexive[)
OFTNx:P =T'x:P By|Eisovar|
O;[x:PFt:N Subderivation
OFN= N’ By i.h. (term size has decreased)
O;l,x:PrFt:N’ "

= OFP—-N= PN By|<*Darrow,
w O;T'FAx:Pt:P— N By|DAabs

* Case O,xT+t:N

D
@;Fi—/\oc.t:Voc.N

orTr =1’ Assumption

O,xTF1t:N Subderivation
OFN= N’ By i.h. (term size has decreased)
O,0T" Ft: N’ "

w  OT'FAx.t:VYa.N’ Byl

w OFVYa.N="Va.N’  By|<*Dforalll (using P = «) and [<*Dforallr
Dgen

* Case
6;lTFt:N
——— |Dthunk
o L N 2K

OrT =T Assumption

O;T+1t:N Subderivation
OFN= N’ By i.h. (term size has decreased)
O Ft: N’ d
w  OF |N=" [N’ By[<*Dshift]
w O F{t}: [N/ By [Dthunk
PCase  grev:p

Dreturn
O;T I returnv: TP Dreturn

OrTr =T Assumption

O,lT+v:P Subderivation
OrPx="p/ By i.h. (term size has decreased)
O;lkv: P’ "
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ey

2

(3

4

=

M

(2

(3

O,l'Fs:M>TQ OFTP < TQ O;Nx:PFt:N

©F TP=" TP’ By|<TDshift]|
w O, returnv: TP/ By |Dreturn

P Case grpy: M

err =T/

O;TFletx:P=v(s);t: N
Assumption
Subderivation

O;TFv: M’
OF IM=" M/
e;rtv:  IM’

O;r+s:M>TQ
OFM= M’

OrTQ= 1Q’

;T Fs: M > TQ’

O+ 1P < TQ
O 1P < Q'

OFNLx:P =T/ x:P
O;Nx:PFt:N
OFN=" N’
Ol ,x:PFt: N’

O;T"Fletx:P=v(s);t: N’

Case

By i.h. (term size has decreased)
"

Subderivation
Inversion (<*Dshift )

By i.h. (term size has decreased)
"

Premise
By Lemma (]Declarative subtyping is transitivel)

By |Eisovar

Subderivation

By i.h. (term size has decreased)
"

By Pambiguousiedand (1-4)

Orr =T’

O;lr'-v: M
O;,l'Fs:M>1TQ O;Lx:QFt:N VP.if @;T+s:M > TPthen® + Q =" P
O;THletx =v(s);t: N
Assumption
Subderivation

O;l'Fv:  [M
Or M=" M’
O;lkFv: M’

O;TEs:M>TQ
OFM= M’

©r1Q=" 1Q’

O;T'Fs: M > T1Q’

OrQ="Q’
OFNx:Q =T",x:Q’
OFN= N’
;T ,x: Q' Ft: N/

By i.h. (term size has decreased)
1

Subderivation
Inversion (<*Dshift|])

By i.h. (term size has decreased)
"

Inversion (<*DshiftT)

By|Eisovar

By i.h. (term size has decreased)
"
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To show the final premise of the |[Dunambiguouslet| rule, let P be arbitrary and assume ;"' + s : M’ > TP.
Now show that @ - Q' =~ P:

O,k s:M’'>TP  Assumption

OFT =T Above
OFM=" M’ Above
O;l'+s: M > TP/ By i.h. (term size has decreased)
OFTP=" TP/ "
OrPx=" P/ Inversion
OrQ=" P Applying subderivation
Q= Q’ Above
erQ'= P By Lemma (]Declarative subtyping is transitive[)

We have now shown the final premise of [Dunambiguouslet} so apply it to give the required typing judgment:

iw O Fletx:P=v(s);t: N’ By|Dunambiguous|et| and (1-3)
* Case
Dspinenil
O;TFe:N>N
orT =17 Assumption
= OFN=" N’ Assumption

w O;T'Fe:N >N’ By[Dspinenil

e Case +
OTFv:P OFP<'Q ©TFs:N>M
—
OTFvs:(Q =N >M Dspinecons

OFT =T’ Assumption
OFQ—=N= T Assumption

By inversion, T =V« - - - V3.P’ — N’. Therefore perform induction over the number of prenex universal
quantifiers, n:

— Casen =0:
N=Q' = N’ By inversion
OFQ—-N=" Q' > N’ Assumption
OrQ="qQ’ By inversion
OFN=" N’ By inversion
erpx=tp/ By outer i.h. (term size has decreased)

D O;lkFv: P/ "

OFP<TQ Subderivation
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(2) OFrP <TQ’ By Lemma (IDeclarative subtyping is transitive[)

O;TFs:N>M Subderivation

= OrM=" M’ By outer i.h. (term size has decreased)

3 O;l"EFs:N > M’ "

s OT'Fv,s:Q" = N> M By|Dspinecondand (1-3)

- Case:n=k+1

T=Va&.T By inversion

O@FP—N="[P/«T’ By inversion (<*Dforalll,|<*Dforallr), for © - P type*

O;T" Fv,s: [P/a]T’ > M’ By inner i.h.
- OrM= M g

;T Fv,s: (V. T') > M’ By

= O;T"Fv,s:T>M' By equality

e Case @FPtype+ @’FFS[P/(X}N»M

Dspinet b
O;TFs: (Va.N) > M
orTr =T Assumption
OFVa.N=" N” Assumption
N” =VB.N’ Inversion (<*Dforallly [<*Dforallr)
OF [P/eJN =" [R/BIN’ " for © F Rtype™
= OFM= M’ By i.h. (term size is the same and the

number of prenex quantifiers has decreased)

;T Fs: [R/BIN' > M/ 7

©;T"Fs:YB.N’> M’  By|Dspinetypeabs

= O;T"Fs: N> M’ By definition of N”/

K’ Well-formedness of typing

Lemma K.1 (Well-formedness of restricted contexts).
O'106,and®' 1@ — ©.

Proof. By rule induction on the ® = ©’ judgment.

* Case

—— |Wcempt
—— [eempo)
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=

=

=

=

* Case

0 = 0

O, x ctx
O ctx
O/, o ctx
O’ ctx

0 = 0’

©@ —0'10
0’10 ctx
010 = 0

(6/) (X) f (®> (X) = (6, f (8) OC)), x

(@' 0),x ctx
O,0 — (01 0),x

©10),0 = 0, «

* Case

0 = O

Assumption
Inversion
Assumption
Inversion
Subderivation

By i.h.

"

5o — o ; Weunsolvedgues]
0,6 = O, &

O, & ctx
® ctx

0, & ctx
O’ ctx

0 = 0’

' O ctx
0 —0'106
010 — @

©,8)](6,&) =(0'106),&

(©

(@' ©),& ctx
0,8 — (@'10),&
@), = ©',&

Assumption

Inversion (IwaunsoIvedguessl)
Assumption

Inversion (]waunsolvedguess[)
Subderivation

By

"

"

i.h.

By [guessn

By
By
By

waunsolvedguessl

Cunsolvedguess|

\Wecu nsolvedguessl

87



=

=

* Case

0 = O

e e e

0, & ctx Assumption
O ctx Inversion (]waunsolvedguess[)
O,& =P ctx Assumption
O’ ctx Inversion
0 = O Subderivation
0’10 ctx By i.h.
® —0'10 "
@/ r @ ﬁ @/ "

(©,8=P)|(©,8) = (©']©),& =P By||guessin

(O

* Case

(@'10),& =P ctx By
0,8 — (@' ©®),&a=P By
|@),a=P = ©',&=P By

0 = 0 e|+-P="Q

0,a=P = 0,2=Q

0,2 =P ctx
O ctx
0,6=Q ctx
O’ ctx

0 = 0O’

@' O ctx
®@ 010
010 = 0

©,&8=Q)(6,6=P)=(0'10),&=Q

* Case

©

(O@'109),a=Q ctx
e +P="Q
0,6=P — (0'10),2a=0Q
©'10),a=Q = 0,& =Q

\_/

© o |VV lved |
S —— cnewunsolvedguess
0 = 0,&

a[=Pl 0O Since & fresh

2)10=0'10  Byfguesnoti

Assumption

Inversion (Cwfsolvedguess)

Assumption

Inversion (Cwfsolvedguess])

Subderivation

By i.h.

"

"

By [guessr]
By |Cwfsolvedguess

Premise

By |Csolvedguess
By |Wcsolvedguess
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O ctx Assumption

O, & ctx Assumption
Q' ctx Inversion qufunsolvedguessD
0 = 0’ Subderivation
= 0’10 ctx By i.h.
= e —0'1e 7
@/ F @ : @/ "

w 016 = 0,& By|VVcnewunso|vedguess

® Case ®:>®/
0 = 0,&4=P

[Wenewsolvedguess|

al=Q]l ¢0© Since & fresh
(0,&a=P)[©=0']0 By |Iguessnotin|
O ctx Assumption
0,2 =P ctx Assumption
0’ ctx Inversion GD
0 = 0O Subderivation
= Q'] O ctx By i.h.
= ® —0'10 "
@/ I* @ :> @/ "
= 0’10 = 0,2 =P By|Wcnewsolvedguess

Lemma K.2 (Type well-formed with type variable removed). If O, «, @ - Ttype® and « ¢ FUV(T), then
Or,0r T typei.

Proof. By rule induction over the definition of well-formed types.

* Case
B € FUV(QLa X, ®R)
Twfuvar
@L) (X,@R F [?’ty-p(:"Jr e

x ¢ FUV(B) Assumption
B# By above
Or, «,Or - B type™ Assumption

} €FUV(OL,0r) By above two statements

w OL,0r P type’ By [Twuvar]
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Case 4 c FEV(O, «, OR)

81_) (X,@R [ &type+

O, «,Or - & type™ Assumption
& eFEV(OL,0r) By above
w  Op,Ort & type” By Twfguess
" Case g 0+ Niype

Twfshift
®L,“>®R [ J,N type+

O, «,Or - N type~ Premise
O1,0r F N type~ Byih.
w  Or,0r - [N typet By|Twfshift]

Case g O, B+ Ntype™

[ Twfforall
O, «,0Or - VA3.N type™

B#« B is fresh
O, «, O, - N type~ Premise
OL,0r,pf + N type~ Byi.h.

= Or,0r FVA.N type~ By|Twfforall

* Case @]_, (X,@R - Ptype+ @]_, &, Or N type

@L,O(,@R FP— Ntype*

Or,«,Or - P type™ Premise
@L, Or+P type+ By i.h.
O, x,Or - N type~ Premise
O1,0r F N type~ Byi.h.
w Or,Og P — N type By|[Twfarrow|

* Case @L, X, Or F PtypeJr

@L) (%) ®R F TP type_

TwfshiftT]

Or,«,Or - P type™ Premise
Or,0r - P typet Byi.h.

w  Op,0 F TP type~  By[Twfshift]]
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Lemma K.3 (Substitution preserves well-formedness of types). If O, «,Og F Ttype*, then O, &,0x

[&/«]T type*.

Proof. By rule induction over the definition of well-formed types.

* Case 5 puV(OL, B,08)

Twfuvar
@L) (X,@R [ octype+

Take cases on whether f = «

— Case 3 = «:

Or,,Or - o type™  Assumption
@/l =& By definition

OL,&,0r - & type™ By

w O, Q®,0rF[&/«p type™ By equality

— Case 3 # o

Or,«,0Or - B typet Assumption
[&/cdp =P By definition

Therefore, p € FUV(O_) or f € FUV(Qg)

B € FUV(@L) &» ®R)

®L> &) ®R F E’ type+ By

w O, R0k F[&/ap type™ By equality

* Case 4 c FEV(O, o, OR)

81_) OC»QR F &type+

O, x, O B typet  Assumption
&/xp =B By definition

Therefore, B € FEV(O_ ) or [AS € FEV(QOg)
B € FEV(OL, &, Ok)

®L> &) Or - ﬁ tYPe+ By

= O, & 0k F [&/a]B type* By equality
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Case -
O, &, Or - N type
-T fshift
O, o, Ox - [N type+ Lwehiftl

Or,«,Or - [N type™ Assumption
O, «,Or - N type~ Premise
OL,&,0 - [&/«]N type~ Byi.h.
O, & Ox I |[&/aIN type*  By[Twfshift]]
OL, 8,0 - [&/a]|N type™ By definition of substitution

Case ®L) ‘X)®R) B FN type

Or,, O F VB.Ntype

[ Twfforall

{3 fresh, and therefore  # «.

O, «,0Or - VA.N type~ Assumption
O, «, (Og,B) - N type~ Premise
O, &, (O, ) F [&/xIN type~ Byi.h.
OL, & O I Vp.[&/aN type~ By [Twfforall
OL, &,0 F [&/«](VR.N) type~ By definition of substitution

Case @]_, X, Or Ptype+ @]_, X, Or N type

Twf:
O, ,Or P — Ntype™

Or,,Or P — N type~ Assumption

Or, ®,Or - P type™  Assumption
O, &,0g F [&/x]P type+ By i.h.

O, ,Or - N type™ Assumption
O, &,0r - [&/aN type~ Byi.h.

OL, & Ok F ([&/aP) — ([&/aN) type~ By [Twfarrow]
O, &,0r - [&/a](P — N) type~ By definition of substitution

Case +
O, o, O P type
L%k T TP — [TwishiftT]
O, x,Or - TP type

O, «,Or - TP type™ Assumption
Or,®,Or - P type™ Premise
O, &,0g F [&/x]P type+ By i.h.
O, & O F T[&/aP type~ By
Or, &,0 - [&/«]TP type~ By definition of substitution
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Lemma K.4 (Context extension maintains variables). If ® — Q, then FUV(®) = FUV(Q) and FEV(@) =
FEV(Q).

Pro

of. All rules ensure that the left-hand side and right-hand side contexts have the same set of free universal

variables and the same set of existential variables. O

Lemma K.5 (Algorithmic typing is w.f.). Given a typing context © and typing environment I" such that © ctx
and © I T"env:

* IfO;TFv:P-H0O/, then @' ctx, ® — ©’, ' I Ptype™, and P ground.
* IfO;THt:N 0O/, then O’ ctx, ® — O’, O’ - Ntype, and N ground.

* IfOTHFs:N>M 40, ®F Ntype™, and [BIN = N, then O'ctx, ®© = 0/, ©' - Mtype,
[©]M = M, and FEV(M) C FEV(N) U (FEV(@’) \ FEV(O)).

Proof. By mutual rule induction over the algorithmic synthesis and spine judgments.

=

[ =y

=

* Case x:PeTl

— A
@;FI—X:P—|®

O ctx Assumption
® —0 By Lemma (]Context extension is reﬂexivel)
© Tenv Assumption

OF P typet  Inversion tl
P ground "

*Case gy .prt:NHO

B

B

[ =

AAab.
@;FF)\X:P.t:P—)N4®/

O ctx Assumption
© +Tenv Assumption
OF P typet P annotation

P ground "

©FTx:Penv  By[Ewfvar]

O;[x:PFt:NHO’ Subderivation

O’ ctx By i.h.
0 — 0’ "
®'F N type~ 4

N ground "

©'FP =N type™ By[Twfarrow]
P — N ground By definition of ground
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* Case

O,xTHt: N0,
A
O;THFAx.t:Va. N 4@/

© ctx Assumption
O, « ctx By
O FTenv Assumption
O, -Tenv By weakening
O,;TH1t:N 40O’ o Subderivation
O/, x ctx By i.h.
0,0 — 0, x "
O, N type~ "
[@'IN ground "
= O’ ctx Inversion
= 0 — 0 Inversion
w OF Vo N type™ By |Twfforall
w  [@](Va.N) ground By definition of ground
P Case orrt:NHe
- [AthunK
O;TH{t}: INHO
O ctx Assumption
O FTenv Assumption
O FTenv By
O;T'Ft:N 4@’ Subderivation
= O’ ctx By i.h.
= 0 — 0 "
O’ N type~ "
[@'IN ground "
w Ok [N type~ By |<*Dshift |
w  [O']IN ground By definition of ground
PCase  oriv:p-He’ e
O;T Freturnv: P40’
Symmetrical to
* Case

OTFv: M0’ O iTks:M>TQ 460"
—e"e

®/// - [@///]Q §+ P @(4)

eb)

@ FP<" Q40"
OBSNx:PFt:N40©

O;THletx:P=v(s);t: N0
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Apply the induction hypothesis to the first premise:

O ctx Assumption
© FTenv Assumption
O;r~v: M0’ Subderivation
Q' ctx By i.h.
@)) e — 0 "
O’ + M typet "
IM ground "

Apply the induction hypothesis again, this time to the second premise:

O ctx Assumption
0 = 0 By Lemma|C.1| (= subsumes — )
O’ FTenv By Lemma Weak context extension preserves w.f. envs[)

O;THs:M>T7Q 40" Subderivation
O’ M type~ Inversion (Twfshift]])

M ground By definition of ground and above
O©'M=M By Lemma (]Applying a context to a ground typel)
(2) 0 — 0" By i.h.
@// CtX "
@// }_ TQ typef 1
©"17Q = TQ g
Now apply the well-formedness of algorithmic subtyping to the third premise:
0'+FP<TQHO Subderivation
0" ctx Above
P ground P annotation
O”1Q=Q By definition of [—]— and above
0" ctx By Lemma (lAlgorithmic subtyping is W.f.|)
(3) @// - @/// 1

[©""]1Q ground "

Apply it again to the fourth premise:

@"F[@"Q <*P40W Subderivation
" ctx Above
[©"]1Q ground Above
@"P=P By Lemma (Applying a context to a ground typel)
0™ ctx By Lemma [E.2| (Algorithmic subtyping is w.f))
(4) e @(4] "

Make use of Lemma (Well-formedness of restricted contexts)) in the context of the fifth premise:

0 = 0O Applying
Lemma q:> subsumes —>[)
to (1)
0 = 0" Above ((2))
e = 0" Applying
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Lemma q — subsumes — I)

to (3)
0" —= ¥ Applying
Lemma (1:> subsumes —)[)
to (4)
© ctx Above
0¥ ctx Above
0 = oW By Lemma (1Weak context extension is transitive[)
ek =W e By premise
5 e — 0’ By Lemma ¢Well—formedness of restricted contextsl)
"

00 ctx

Finally, apply the induction hypothesis to the last premise:

00 ctx Above
0 = 0¥ By Lemma|C.1| (= subsumes — )
©0®) FTenv By Lemma Weak context extension preserves w.f. envs[)
OF P typet P is an annotation
©®) - P typet By Lemma QContext extension preserves w.f.[)
P ground P is an annotation
©B) - x: Penv By
OG):Tx:PFt:N-40©) Subderivation
= 0 ctx By i.h.
(6) @(5) — @(6) "
= 0 - N type~ "
= N ground "
= e — 0 Applying Lemma (IConteXt extension is transitive[) to (5) and (6)

* Case e;rFv: M@’

@;iTFs:M>TQ40” FEV(Q) =0 ©”7=0"10 0" Ix:Qrt:N4e®W _
7 Aunambiguouslet
O;TFletx =v(s);t: N 40!

First apply the induction hypothesis to the first subderivation:

O ctx Assumption
© Tenv Assumption
OTFv: MO’ Subderivation
O’ ctx By i.h.
@)) 0 — 0 "
O’ F M type* "
IM ground "

Now apply the induction hypothesis to the spine subderivation:

O’/ ctx Above
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0 — O’
®’ FTenv

OTEs:M>1Q 10"

M ground
O’ M type
@'M=M

0" ctx

©"-1Q type~
@/ :> @//

Applying Lemmala' (= subsumes — ) to (1)

By Lemma (IWeak context extension preserves w.f. envsl)
Subderivation

By the definition of ground

Inversion (|washiftl

By Lemma [D.5 (Applying a context to a ground type)

By i.h.

"

"

Produce a strong context extension judgment using Lemma [K.1] (Well-formedness of restricted contexts):

O ctx
Q" ctx
0 — 0"
@//I — @// I* @
2 e — 0"
0" ctx

Above

Above

By Lemma (IWeak context extension is transitivel)
Premise

By Lemma (IWell-formedness of restricted contextsl)
1

Finally, apply the induction hypothesis to the last premise:

@ : @///
O" FTenv
1" —+
0" F Q type
©” F Q type"
FEV(Q) = 0
Q ground
0" FIx:Qenv

0" ctx
" FTx: Qenv
O":Nx:QFt:N40®W

= 0" ctx
3 0" — oW
= O™ - N type~
= N ground
= @ — W

* Case

Applying Lemmalal (= subsumes —) to (2)

By Lemma Iﬁl (Weak context extension preserves w.f. envsl)
Inversion (Twfshift])

By Lemma [D.4 (Context extension preserves w.f))

Premise

By definition of ground

By Ewhvr

Above
Above
Subderivation

By i.h.

Applying Lemma (]Context extension is transitivel) to (2) and (3)

@;Fl—e:N>>N—1@

= O ctx
= O =0
(= OF N type™
= [BIN = N

FEV(N) C FEV(N)

Assumption

By Lemma (IWeak context extension is reﬂexivel)
Assumption

Assumption

By reflexivity of C
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w FEV(N) C FEV(N) U (FEV(©’) \ FEV(©))

*Case gry.p4E O FP<'[Q]Q-40O"

By definition of C

" Tks:[@"IN>M-40"

O;THv,s:Q—=N>M-140"

O ctx
O FTenv
O;r'~v:P-H0O’

O’ ctx
0 — 0O
Q'+ P type"
P ground

@'+P<tQHO”
O’ ctx
P ground
©1[0e1Q = [©]1Q
0" ctx
e — 0"
[©"][@']1Q ground

0" ctx

e — 0"

® - @//
" FTenv

0" Tks: [@"IN>TQ 40"

O+ N type~
@ F N type~
0"+ [@”IN type~
©"][@"IN = [@”]N

= 0" ctx
@// :> @/l/
= 0" M type~
= [@///]M -M
FEV(M) C FEV(N) U (FEV(@"") \ FEV(0"))

- 0 — e
FEV(N) C FEV(Q — N)
FEV(©) = FEV(0")
=  FEV(M) C FEV(Q — N) U (FEV(©") \ FEV(©))

*Case g . N>MHO'  «¢FUV(N

Aspinecon

Assumption
Assumption
Subderivation

By i.h.

"
"

"

Subderivation
Above
Above

By Lemma D.6| (Context application is idempotenq)
By Lemma Algorithmic subtyping is w.f))
"

"

Above

By Lemma
By Lemma
By Lemma
Subderivation
Inversion (|waarrow|)

By Lemma [D.4{ (Context extension preserves w.f.[)

By Lemma Applying context to the type preserves w.f.l)
By Lemma m Context application is idempotent[)

By i.h.

"

Declarative subtyping is transitivel)
— subsumes —|)
Weak context extension preserves w.f. envsl)

"

"

"

By Lemma (]Weak context extension is transitivel)
By definition of FEV

By Lemma (]Context extension maintains variables|)
Substituting above

O;Tks:(Vu.N)>MA0’

) — .
[Aspinetypeabsnotin|
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O;l'rs:N>M-0'

© ctx
O FTenv

OF Va.N type™
O, x - N type~
©F N type™

O] (V.

N) =Va. N

V. [BIN = V. N
[BIN =N

O’ ctx

0 = 0O

@/

M type™

O'M=M
FEV(M) C FEV(N) U (FEV(©') \ FEV(©)) "

FEV(Va.

N) = FEV(N)

Assumption
Assumption
Subderivation
Assumption

Inversion (Twfforall])

By Lemma [K.2| (Type well-formed with type variable removed)

Assumption
By definition of [—]—
By equality

By i.h.

By definition of FEV

FEV(M) C FEV(Vx.N) U (FEV(©’) \ FEV(©®)) Substituting above

*Case g 5k [@/aJN>M-40,&[=P] «cFUV(N)

O;Tks: (Va.N)> M0, &[=P]
© ctx Assumption
0, & ctx By|waunsoIvedguess|
© FTenv Assumption
0 = 06,& By Lemma |ﬁ| (Weak context extension is reﬂexivel)
and |chewu nsolvedguess|
O,&FTenv By Lemma |C_6| (IWeak context extension preserves w.f. envs[)
O, Tks:[&/J]N>M-H0O’,&[=P] Subderivation
O F Va. N type™ Assumption
« ¢ FUV(O) o fresh
O,k N type™ By |Twfforall
O,&F [&/adN type~ By Lemma (ISubstitution preserves well-formedness of typesl)
O](Va.N) = Va. N Assumption
[OIN =N By definition of [—]—
Bl([&/a]N) = [&/N & fresh
O, &]([&/x]N) = [&/«]N By definition of [—]—

=

=

[

o/,
0,8 = O, &[=P]

e, &=
0, &=

&[=P] ctx

Pl M type~
PIIM =M

By i.h.

"
"

"

FEV(M) C FEV([&/xIN) U (FEV(©',& [= P]) \ FEV(©, &)) "
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0 —0 By Lemma [C.2| (Weak context extension is reﬂexive[)
0 = 0,& By & fresh & |Wcnewunsolvedguess|
w 0 — O,&[=P] ByLemma M (]Weak context extension is transitivel)

FEV(M) C FEV([&/«]N) U (FEV(®', & [= P]) \ FEV(©)) By definition of FEV
FEV([&/xIN) C FEV(Va. N) U {&} By definition of FEV
{&} € FEV(@', & [= P]) \ FEV(©) By definition of FEV

= FEV(M) C FEV(Va. N) U (FEV(©’, & [= P]) \ FEV(O)) By above

L’ Determinism of typing
Lemma L.1 (Algorithmic typing is deterministic).
e IfO;THe: Ay 10 and O;T - e: A; 40, then Ay = A, and ©F = 0},
s IfO;THFt:N>M; 407 and ©;T'+t: N> M, 403, then M; = M, and O] = O).

Proof. The algorithmic system is mostly syntax-oriented, with the only exceptions |Aspinetypeabsnotin| and
(which have the same conclusion) being distinguished by whether o € FUV(N), a deter-
ministic check. Therefore, determinacy of the system follows by a straightforward mutual rule induction
over the algorithmic synthesis and spine judgments, making use of Lemma (Algorithmic subtyping is|
[deterministic). O

M’ Decidability of typing

Lemma M.1 (Decidability of algorithmic typing). There exists a total order = on well-formed algorithmic
typing judgments such that for each derivation with typing judgment premises A; and conclusion B, each A;
compares less than B, i.e. Vi.A; C B.

Proof. We use the same ordering of judgments as in Lemma (Isomorphic environments type the same|

[terms).

* Case x:PeTl

— A
@;FI—X:P—|®

Testing membership of ' terminates since typing environments are finite.

* Case O;x:PFt:NHO’

AAab.
@;FF?\X:P.‘(:P—)N%@’

Ax:P.t|=|t] + 1 By definition of |_|
> |t
= (O;x:PFt:NHO)
M By definition of C
(@;rl—)\XZP.tIP%N%@/) 100



* Case /
O,xTHFt:N40O, «
-A
O;THFAx.t:Va. N 4@’@

[Ac.t] = [t] + 1 By definition of |_|
> [t

= O, THt: N0/, )

=

=

M By definition of C
(O;T - Ax.t:Vo.N 4 0)

P Case grit:NHe

Athunk
O;TH{t}: INHO’
{tH = [t|+1 By definition of |_|
> |t
(O;THFt:N-HO")
N By definition of

(&;TH{t}: INH4O")

*Case @riv.pHe’

Aret
@;FI—returnv:TP%@’

[return v| = |v| + 1 By definition of |_|
> v
(O;THv:PHO)
M By definition of C

(©;T Freturnv: TP 40')

*Case griy,. M40 ©iMFs:M>7Q40” ©"FP<'QH0"

=

e@”"F@"Q<"P40W e =0"re OP;Lx:Prt:N-40"
— Aambiguouslet]
O;THletx:P=v(s);t:N-40®

The algorithmic subtyping judgments terminate per Lemma [.2] (Decidability of algorithmic subtyping]).

llet x : P =v(s);t] = [v|+|s| +[t] + 1 By definition of |_|
V| <|let x: P =v(s);t]
@©;TFv: M0
M By definition of
(O;THletx:P=v(s);t: N 400

Is| <|let x : P =v(s);t]
OTEs:M>TQ10")
M By definition of
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(T Hletx:P=v(s);t:N 40

[t] <llet x : P =v(s);

= (OB)Tx:PFt:N40©)

M By definition of C
(O;THletx:P=v(s);t: N -0©)

* Case e;r-v: M@’

@;iTFs:M>TQ40” FEV(Q) =0 ©”7=0"10 0" Ix:Qrt:N46e®W _
O;THletx =v(s);t:N40W

Determining the set of free universal variables of a finite type is terminating.

llet x =v(s);t| = |v|+|s|+ [t|+1 By definition of | |
V| < |let x = v(s);t]

- (O;TFv: M40

M By definition of C
(O;TFletx =v(s);t: N 40M#)

Is| <|let x = v(s);t|

- @Tks:M>1Q40")

M By definition of C
(O;THletx =v(s);t: N 40M#)

[t] < llet x =v(s);t|

e (O@":T,x:PFt:N40M®)

=

M By definition of C
(©;T Fletx =v(s);t: N 40W)

* Case
Aspi il
O N> N jo P

Rule terminal.

* Case / I + I " " " "
O;'-v:P40 O'FPLST O 10 O%TEs:[@'IN>M-10O
= 197 R
O;lr-v,s:Q—=N>M-H0O

The algorithmic subtyping judgment terminates per Lemma [.2] (Decidability of algorithmic subtyping]).

vy s| = [v]+[s| +1 By definition of |_|
> vl
(O;TFv:PHO)
M By definition of C
O;TFv,s:Q = N>M-0")
v, sl > 1s|

(O";TEs:[@"IN>MA40")
By definition of C
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-
O;TFv,s:Q > N>M-10"

*Case g . N>MHO' ¢ FUV(N)
OTFs:(Va.N) >M10’

IAspinetypeabsnotinl

Is| = s
NPQ(Ve. N) >NPQ(N)
= O;TFs:N>M-H0')
M By definition of C

(O;TFs: (Va.N) > M - @)

We define types to be finite, therefore calculating FUV(N) is terminating.

* Case 6,&TEs:[&/aJN>M-10',&[=P] oceFUV(N)A —
Aspinetypeabsin|
O;Tks: (Vo.N) > M40, &[=P] spinetypeapsin
Is| = s
NPQ(Vow. N) > NPQ([&/IN) Since « and & are positive, the substitution

cannot introduce any prenex quantifiers.
w  (O,&TFs:[&/«N>MA40,&=P])
M By definition of
(O;TFs: (Va.N) > M -0

We define types to be finite, therefore calculating FUV(N) is terminating.

N’ Soundness of typing

N’.1 Lemmas

Lemma N.1 (Extended complete context). If @' ctx, Qctx, @ — Q, 0 = O/, and @' | @ — Q, then
30’ such that Q' ctx, ®' — Q’/, and Q = Q.

Proof. We add the & [= P] context items that newly appear in ®’ to the complete context.
By rule induction on @ = O':

* Case
—— [Wcempty

The new context is -.

= - ctx By
= — By
= = - By
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* Case 0 — O
0,0 = O«

We add the « context item onto the new context from the induction hypothesis.

O/, a ctx Assumption
(D O’ ctx Inversion (Cwfuvar)
O,0 — Q Assumption
Q =0, Inversion ||
2) e —0 "
Q, «x ctx Assumption
3) Q ctx Inversion
(@) 0 = 0O Subderivation
0,0, — O,  Assumption
(5) 010 —Q Inversion ([uvar)
Q' ctx By i.h., using (1-5) and for some complete context Q’

0 — Q/ "
Q - Q/ "

= Q' x ctx
= 0 a — Q' a
= Q,cx:>fl’,oc

c Case g _. @ - —
6.8 — o g Weunsolvedguesg
@,& — @,)& cunsolveaguess

We add the & = P context item to the new context from the induction hypothesis, where P is the
solution for & in the complete context Q.

O, & ctx Assumption
@9) O’ ctx Inversion qufunsoIvedguess[)
0,28 — Q Assumption
0,8 — Q Assumption
Q=Q,&a=P Inversion
2) e —Q "
QO,&="P ctx Assumption
3) Q ctx Inversion
QFP typet "
P ground "
4 0 = 0O Subderivation

0,&] 0,8 — Q,&=P  Assumption
(©@'1©),& — Q,& =P Inversion ([guessin

5) e0'1e —0 Inversion (Csolveguess
Q' ctx By i.h., using (1-5) and for some complete context Q'
0 — Q/ "
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Q:>Q/ "

Q'+ P type* By Lemmam (Weak context extension preserves well—formedness[)
= Q& =P ctx By |Cwfsolvedguess|
= 0,&a — Q& =P By|Csolveguess
QIOFP="P By Lemma B.1| (Declarative subtyping is reflexive)

= Q,&a=P = Q',&=P By Wesolvedguess

* Case 0 — O

o e [T

As before, we add the & = Q context item to the new context from the induction hypothesis, where Q
is the solution for & in the complete context Q.

O & =P ctx Assumption
D O’ ctx Inversion
0,2 — Q Assumption
Q=0,8=Q Inversion
2 e —Q "
Q,&=0Q ctx Assumption
3) Q ctx Inversion
QFQ typet "
Q ground "
C)) 0 = 0O Subderivation

@,&a=P/O,&8 — O,&=Q  Assumption
(@'10),6=P — QO,&=Q Inversion ([guessin
(5) 01 —0 Inversion (Csolvedguess
[Qle'TerP="Q "

Q' ctx By i.h., using (1-5) and for some complete context Q'

e — Q/ "

Q = QI "

Q'FQ type" By Lemma Ia (Weak context extension preserves well-formedness[)
= Q' &=Q ctx By |Cwfsolvedguess|

@ FP="Q Since [Q](@' ©) = [Q]O’
" @,&=P — Q’',&=Q By|Csolvedguess
QIOFQ="Q By Lemma [B. 1] (Declarative subtyping is reflexive)

= Q,a=Q0 = 0Q',&=Q By Wesolvedguess

e Case e} — @l ||@|| P E+ Q

0,a=P = 0,2=Q

We add the & = R context item to the new context from the induction hypothesis, where R is the
solution for & in the complete context Q.
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€Y)

(2

(3

4

&)

€3]
(2
(3
4

(5)

e = 0O
0 = 0,&

0,6 =Q ctx
O’ ctx
0,8 — Q
0,a=P — Q

QO=0,=R
e —0Q
[®|FP="R
Q,& =R ctx
Q ctx

QFR typet

R ground

0 = 0O’

0,8a=Q!0,a=P — Q,&a=R
@10),6=Q — Q,&a=R

e'le — O

Q' ctx

e — Q'
Q= Q’

Q' F R type"
Q',& =R ctx
el FP="Q
] FQ="R
l©]FQ="R
0,a=Q — Q',&a=R

QOFP="R

[
O0,8=P = Q’,&a=R

|Wenewunsolvedguess|

O/, x ctx
O’ ctx
® —Q
Q ctx
0 — 0O

©,8)]0 — Q
010 —Q

Q' ctx
e — QO
QO = Q'

Q&= |Va.Ta) ctx
e a — (Q,&a=[Va.Ta)

Assumption

Inversion (Cwfsolvedguess)

Assumption
Assumption

Inversion (Csolvedguess)
"

"

Assumption

Inversion (Cwfsolvedguess))
1"

"

Subderivation
Assumption

Inversion ([guessin
Inversion ‘Csolvedguess

By i.h., using (1-5) and for some complete context Q'
"

"

By Lemma IE' (Weak context extension preserves well-formedness[)
By |Cwfsolvedguess|

Premise

By Lemma Declarative subtyping is transitivel)

By Lemma |C.3| (Equality of declarative contexts (weak)|)
By|Cso|vedgue§s|

By Lemma D.2] (Equality of declarative contexts)

By|Wcsolvedguess

We add a solved context item for & to the new complete context from the induction hypothesis.

Assumption
Inversion |l
Assumption
Assumption
Subderivation
Assumption

Inversion |i

By i.h., using (1-5) and for some complete context Q'
"

"

By |Cwfsolvedguess|
By |[Csolveguess
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= Q= (Q,&=]Va.Tx) By|VVcnewunsoIvedguess

* Case 0 — 0
0 = 0,a=P

[Wenewsolvedguess|

We add the & = P context item onto the new context from the induction hypothesis.

O,& =P ctx Assumption
(@D) O’ ctx Inversion (]waunsolvedguess[)
@' I P type" "
P ground "
2) ® —Q Assumption
3 Q ctx Assumption
4 0 — 0O Subderivation
@,&a=P)|6 — Q Assumption
(5 e'1Me —Q Inversion ID
Q' ctx By i.h., using (1-5) and for some complete context Q'
@/ N Q/ 1
Q ﬁ Q/ 1
Q'+ P type* By Lemmalﬂ (Context extension preserves w.f.[)
= (Q',&=P) ctx By [Cwfsolvedguess
= e,a — (Q',a=P) By‘Csolveguess
= Q = (Q',&a=P) By chewunsolvedguess|

Lemma N.2 (Identical restricted contexts). If ®' ctxand ® — @', then ®”" 0@ =0"| ©'.

Proof. By rule induction on the ®” | © judgment.

* Case

= [empty

- — ©®' Assumption
e =- Inversion (Cempty)

e 1= Byflempy

* Case " "
0"10=0
@l/) OL[@, o = @///, o

x €@’ By Lemma (]Context extension maintains Variables|)
0’1o =" By i.h.
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w 07,00 =0",a By|luvar
(the « context item must appear last in ®’ by well-formedness of ©')

e Case 9 .y
0"10=0 '
0", &l=PI[6,&[= QI = 0", &l P

&[=R] €©’ By Lemma (IContext extension maintains Variables[)
e'1e'=0" By i.h.
w O",&[=P]|©' =0",&[=P] By|lguessin
(the & [= R] context item must appear in ©' last by well-formedness of ©')

hd Case @//I~®:®/N &[: Q]¢®
@l/, &[: P] r @ _ @///

&[=R] €0’ By Lemma (]Context extension maintains variablesl)
e =0" Byih.

= ©",a[=P|[©'= 0" By[guessnoris

N’.2 Statement

Theorem N.3 (Soundness of algorithmic typing). If Octx, © I "env, @' — Q, and Q ctx, then:
s IfO;TFv:P 0O/, then ||O] ;T Fv:[Q]P.
* IfO;TFt:N A0/, then |©|;T F t: [Q]N.

s IfO;TEFs:N>M-H0/, @F Ntype, and [O]N = N, then IM’ such that |©| + [QIM =~ M’ and
18];T+ s: [QIN > M.

Proof. By mutual induction with Theorem (Completeness of algorithmic typing)), using the judgment
ordering from Lemma (Tsomorphic environments type the same terms]).

* Case x:Perl

— A
@;FI—X:P—|®

x:PeTl Premise
P ground Typing environment only contains ground types
x:[Q]P el By Lemma ¢Applying a context to a ground typel)

= ||©]|;"Fx:[QJP  By[Dvar]
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*Case  onx:PrHt:NHO

O;THFM:P.t:P N0’

O ctx
© FTenv
O;TFAx:P.t:P=-N-HO’
O©FP— N type™
P — N ground
O+ P type*
P — N ground
P ground
OFTLx:Penv

I9];x:PEt: [QIN
I©];hx:PkFt:[QIN
I8];x: [QIPF t: [QIN
1©];T FAx.t: [Q]P — [Q]N
[Q]

= 18];T F Ax.t: [Q](P — N)

=

=

*Case g 4PHt:NHO,«

Assumption
Assumption
Assumption

By Lemma (]Algorithmic typing is w.ﬂ)
1

Inversion (Twfarrow)

Assumption
By definition of ground

ry il

By i.h. (term size decreases)

By definition of [—]—

By Lemma (]Applying a context to a ground type[)
By|DAabs
By definition of [—]—

A
Ol Ax.t:Va.N 4O’

O ctx Assumption

0, x ctx By

© Tenv Assumption

O, «Tenv Weakening

e —Q Assumption
O a — Q By

Q ctx Assumption

Q, o ctx By

19, ;T F t: [Q,xIN By i.h. (term size decreases)
18], T Ft: [QIN By definitions of ||—|| and [—]—
IO]I;T F Act.t: Ve, ([QIN)  By[Dgen|
1O|;TF Ax.t: [Q](Va.N) By definition of [—]—

* Case /
O;T'Ft:N-HO

Athunk

o N o AhnK

O;l'+t: N 4@’ Subderivation
I9];T F t: [QIN By i.h. (term size decreases)

|©][;T - {t}: LIQIN By [Dthunk

|©];T +t: [Q]IN By definition of [—]—
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* Case OTFv:PH0’

Areturn
O;T F returnv: TP 40’
Symmetric to case.

*Case  orpy: M40  @:TFs:M>T1Q0-40" ©"FP<*Q-0"
@”"r@e"Q<trP4e" @Bl =e%re e¥inx:Prt:N-4e®
— Aambiguouslet
O;THletx:P=v(s);t: N0

Use well-formedness of the first premise:

O ctx Assumption
© +Tenv Assumption
O,Tr'Fv: M0’ Subderivation
0 — 0 By Lemma qugorithmic typing is w.ﬂ)
0’ ctx "
O+ M type™ "
IM ground "

Now use the well-formedness of ;T Fs: M > TQ 40"

O’ ctx Above
@) 0 = 0O By Lemma|C.1| (= subsumes — )
O’ FTenv By Lemma [C.6| (Weak context extension preserves w.f. envs[)
O’'+M type~ Inversion (Twfshift])
M ground By definition of ground
O'M=M By Lemma QApplying a context to a ground typel)
2) e = 0" By Lemma (]Algorithmic typing is w.ﬂ)
@/I ctx 1!
@// '_ TQ typef 1
©"17Q = 1Q "
Next use the well-formedness of @” P <t Q 4©"":
0" ctx Above
P ground P annotation
O"1Q=Q By definition of [—]—
Q" ctx By Lemma (]Algorithmic typing is w.ﬂ)
@/I - @//I 11
[©"]1Q ground "

And the well-formedness of " I [@"/]Q <™ P 40®*):

" ctx Above
[©"1Q ground Above
@"1P =P By Lemma (IApplying a context to a ground typel)
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0" ctx
e @(4)

Use the well-formedness of the restricted context:

O ctx
0™ ctx
@// :> @/ll
e — @(4)
0 — oW
ek =W e
06) ctx
3) © — 0B
4 L) —= o™

By Lemma (]Algorithmic typing is w.fl)
1

Above

Above

By Lemma — subsumes —

By Lemma = subsumes —

Applying LemmaM (]Weak context extension is transitivel)
to (1), (2), and above

Premise

By Lemma (IWell-formedness of restricted contexts[)
1!

"

Finally use the well-formedness of @®);,x : PFt: N 40"":

O FTenv
0 = o)
0O0) FTenv
OF P typet
P ground

00 ctx

O®) T x: Penv
Ob)Nx:PHt: N +0®

0®) ctx
e06) _, k)

Assumption
By Lemma — subsumes — )
By Lemma Weak context extension preserves w.f. envsl)

P annotation
12

Above

Subderivation

By Lemma (]Algorithmic typing is w.f[)
1

Use Lemma (Extended complete context) to obtain a complete context for the second to fourth judg-

ments:

e06) 5 ek
e —
ek —

0" ctx

Q ctx

ek —
et — @

Above
Assumption
By Lemma (]Context extension is transitive[)

Above

Assumption

Above

Above

Above

Substituting using above

By Lemma (IIdentical restricted contexts[)

By Lemma (]Extended complete contexd)
1

4
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e @(4)
0" — Q'
e — e
0" — Q'

Restrict Q' such that ©®' extends to it:
@// :> Q/
o’ — Q'

Let Q" =Q'| ©".
Q" ctx
0 — Q"
Q// :> Q/

Apply the induction hypothesis to the first premise:

O ctx
OFTenv
@/ s Q//
Q" ctx
O;rrv: MO’
I8];TFv: Q"M

Q" F M type~
fo X4 N Q'
[Q]M ground
Q" ctx
Q' ctx
1Q7] F Q"M =™ [Q'TM

9] F Q"M =~ [Q'TM

Above
By Lemma (]Context extension is transitivel)

Above
By Lemma (]Context extension is transitive[)

By Lemma
By Lemma

By Lemma (]Well-formedness of restricted contexts[)
1!

—> subsumes — )
Weak context extension is transitive[)

"

Above

Above

Above

Above

Subderivation

By i.h. (term size decreases)

By Lemma (]Context extension preserves w.f.[)

Above

By Lemma (]Applying a context to a ground ty'pel)
Above

Above

By Lemma (|:> leads to isomorphic types (ground)|)

By Lemma |O.1| (Weak context extension maintains Variablesl) and
Lemma |K4| ilContext extension maintains variables))

Next apply the induction hypothesis to the spine premise:

O’ ctx

©’ FTenv
@// N Q/

Q' ctx
OiTks:M>TQ 410"
@'+ M type~
@M =M

I©];T Fs: [Q'IM > M’
| [QT1Q = M
M’' =TQ’

1©];T Fs: [QTM > TQ’

1©];TFs: [Q"IM > TQ"”

Above

Above

Above

Above

Subderivation

Above

Above

By i.h. (term size decreases)
1

Declarative typing rules preserve shift structure
Substituting above

By Lemma (IIsomorphic environments type the same termsl),
using the fact that declarative typing rules preserve shift structure
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e +T1Q"="1Q”

"

Show the third premise of [Dambiguouslet] first by establishing one direction of the isomorphism:

(5) O ctx

(6) 0" — QO

@2 O" F P type*

(8) P ground
0" F1Q type"

9 0"+ Q typet
©"17Q = 1Q

(10) B”"1Q=Q

l@”| P <"Q1Q

Now establish the other direction:

@/I/ ctx
e — qQ’
@/II '_ [@/II]Q type+
[©"]1Q ground
®" + P typet
[©"P =P

||®/ll|| l_ [@///]Q §+ [Q/]P

Show the fourth premise of

||®l//|| '_ [@///

||®III|| '_ [@/Il
@+ Q

[e”-Q <*P
9] F [Q

8] FP<T[Q1Q
8] FP="[QQ

O FIQ ="M

e +1Q71Q = 1Q’

o] - [Q1Q ="Q’
e -P="qQ’
O] TP <~ TQ’
O] -TP <~ TQ"

And now show the final premise of

OF N type™
(11) 0B ctx
OFTenv
O0) FTenv
0B P type*
P ground

Shown above
Above
Above
Above
Above

By inversion of |washiftT|
By Lemma [K.5| (Algorithmic typing is w.f)
By definition of [—]—

By (5-10) & Theorem (]Soundness of algorithmic subtyping|)

Shown above
Above

By Lemma (IApplying context to the type preserves w.f.[)
Above

By Lemma [D.4{ (Context extension preserves w.f))
By Lemma Applying a context to a ground type)

By Theorem (]Soundness of algorithmic subtyping[)

By Lemma (Applying a context to a ground type)

By Lemma F.5 (— leads to isomorphic types (ground))
By Lemma m Declarative subtyping is transitivel)

By Lemma Equality of declarative contexts)

By Lemma Equality of declarative contexts (Weak)[)

By Lemma (]Equality of declarative contexts (weak)[)
We have shown the subtyping in both directions

Above
Substituting definition of Q' into above

Inversion (|§jE DshiftTl)

By Lemma [B. (]Declarative subtyping is transitive[)

(]Declarative subtyping is transitivel)

Assumption

Above

Assumption

By Lemma Weak context extension preserves w.f. envsl)
By Lemma D.4{ (Context extension preserves w.fJ)

Above
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(12) @) -Tx : Penv By [Ewfvar]

(13) e 0 Assumption

IO];x:PEt: [QIN By (11-13) & i.h.
Finally apply [Dambiguouslet
w  ||O;THletx:P=v(s);t: [QIN By|Dambiguouslet

* Case e;rFv: M@’

@;iTFs:M>TQ40” FEV(Q) =0 ©”"=0"10 0" Ix:Qrt:N4eW :
7y Aunambiguouslet
O;TFletx =v(s);t: N 40

As with the |Aambiguouslet| case, first use the well-formedness of the first premise:

O ctx Assumption
O +Tenv Assumption
OTFv: MO’ Subderivation
0 — 0’ By Lemma (]Algorithmic typing is w.ﬂ)
O’ ctx "
O’ F [M type* "
LM ground "

Now use the well-formedness of ;T Fs: M > TQ 40"

O’ ctx Above
€9 0 = 0O By Lemma|C.1|{ (= subsumes —)
O’ FTenv By Lemma [C.6| (Weak context extension preserves w.f. envsl)
O'FM type~ Inversion 1|'wa'shiftl|)
M ground By definition of ground
O'M=M By Lemma (IApplying a context to a ground typel)
(2) e = 0" By Lemma (]Algorithmic typing is W.ﬂ)
@// CtX 1
@// '7 TQ typef "
Use the well-formedness of the restricted context:
O ctx Above
0" ctx Above
6 = 0" Applying Lemma (]Weak context extension is transitivel)
to (1) and (2)
e"=0"]0 Premise
3 O ctx By Lemma (IWell—formedness of restricted contexts[)
e — " "
@//l ﬁ @l/ 1
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Finally use the well-formedness of ®”/;T,x: PFt: N 4 0®:

© +Tenv Assumption
0 = 0" By Lemma|C.1{ (= subsumes —)
0" FTenv By Lemma Weak context extension preserves w.f. envs[)
OF P typet P annotation
P ground "
0" ctx Above
O" FIx:Penv By wavaﬂ
O":Mx:PHt:N460® Subderivation
0" ctx By Lemma (]Algorithmic typing is W.ﬂ)
e @(4) "

Use Lemma [N.1] (Extended complete context) to obtain a complete context for the second judgment:

Q" — oW Above
e —a Assumption
0" — Q By Lemma (]Context extension is transitivel)
0" ctx Above
Q ctx Assumption
0" —Q Above
0" = 0" Above
"=0"]0 Above
"' — Q Substituting using above
e"e"” — Q By Lemma (]Identical restricted contextsl)
Q' ctx By Lemma (]Extended complete context[)
@/I N Q/ 1
Q = Q'

Restrict Q' such that ®’ extends to it:

0" = QO By Lemma C.1{ (= subsumes —)
0 = By Lemma Weak context extension is transitive)
Let Q" =Q'] ©.
Q" ctx By Lemma (]Well—formedness of restricted contexts[)
0 — Q" "
Q/l # Ql 1

Apply the induction hypothesis to the first premise:

O ctx Above
O FTlenv Above
e — Q" Above
Q" ctx Above
OTFv: MO’ Subderivation
I8];TFv: [Q"]IM By i.h. (term size decreases)
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Q"+ [M type™
Q// : Q/
[Q]M ground
Q" ctx
Q' ctx
Q7] F [Q"IM =~ [Q']M

18] F Q"M = [QM

By Lemma (IApplying context to the type preserves w.f.[)
Above

By Lemma (]Applying a context to a ground ty'pel)
Above
Above

By Lemma (]ﬁ leads to isomorphic types (ground)[)

By Lemma |O.1| (Weak context extension maintains Variablesl) and
Lemma @Context extension maintains variables])

Next apply the induction hypothesis to the spine premise:

O’ ctx
@' FTenv
@// N Q/

Q' ctx
OTks:M>TQ 410"
®'F M type~
@M =M

1B];T+ s: [Q'TM > M’
jel - [17Q = M’
M = 1Q

IOf;T F s: [QTM > 1Q’

I©];TFs: [Q"IM > 1Q"

el -1Q" =~ 1Q”

Above

Above

Above

Above

Subderivation

Above

Above

By i.h. (term size decreases)
"

Declarative typing rules preserve shift structure
Substituting above equation

By Lemma (IIsomorphic environments type the same termsl),

using the fact that declarative typing rules preserve shift structure
"

Next apply the induction hypothesis to the last premise:

©F N type~
4 O ctx
O FTenv
" FTenv
@/// '_ Q typeJr
FEV(Q) = 0
Q ground
(5 0" FIx:Qenv
e —
e @(4)
) 0" — Q

©[;hx:QFt: [QIN

Assumption

Above

Assumption

By Lemma Weak context extension preserves w.f. envs[)
By Lemma m Context extension preserves w.f.[)
Premise

By definition of ground

By e

Assumption

Above

By Lemma (]Context extension is transitive')

By (4-6) & i.h.

Rework the declarative judgment we got from the induction hypothesis to match the form we need to apply

unambiguouslet

el - 1Q17Q =~ M’
O] - 1Q =~ M’
el Q=" 1Q’
loll-1Q =" 1Q"

Above

By Lemma (IApplying a context to a ground typel)
Substituting in the definition of Q'

By Lemma (IDeclarative subtyping is transitivel)
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o] +Q="Q"
19];hFx: Q" F t: [QIN

Now show that for all positive types P, if ||©]| ;,F Fs
IM > TP.

|
arbitrary positive type such that ||©||;T F s : [Q
l©|;TFs: [QTM > TP

@ Tks:M>TR-H6O"

@) [Q']TR = TP
O;Tks:M>T1Q 40"

TR=TQ

[Q']TQ = [Q']TR

[Q']TQ = TP

9 [QNQ="P

O] FP<tP

e FP="P

9] FQ1Q =" P
el - 01Q =" Q’
el Q" ="P

Finally apply [Dunambiguousletf

Inversion (|§iAshift ])

Using LemmaH (Isomorphic environments type the same termsl)

to change the typing environment

:[Q'IM > 1P then ||®|| - Q” =" P. Let P be an

By Lemma [D.2| (Equality of declarative contexts)
By Theorem |O.4 (Completeness of algorithmic typing),

for some R and ©” (term size decreases)
"

Subderivation

By Lemma (]Algorithmic subtyping is deterministic[)
Applying Q' to both sides

Substituting using (7)

By definition of [—]—

By Lemma (IDeclarative subtyping is reﬂexive[)

By definition of =™

Substituting using (8)

Above

Applying Lemma (]Declarative subtyping is transitive|) twice

BleunambiguousIetl

w ||O|;TFlet x =v(s);t: [QIN
* Case
Aspinenil
@;FFe:N»N%@m
= 1©];T F e: [QIN > [QIN  By|Dspinenil
w ||O] F[QIN =7 [QIN

P Case orpv:pHe

©FP<"[©1Q16"

By Lemma (]Declarative subtyping is reﬂexivel)

Q" TrFs:[@"IN>M-40"

O;TFv,s:Q—oN>M-10"
©FQ — N type™ Assumption
OF Q type" Inversion (Twfarrow
O F N type™ Inversion (Twfarrow
BI(Q—=N)=Q—N Assumption
BlQ - BIN=Q —=N By definition of [—]—
BlQ=Q By equality
© ctx Assumption
O FTenv Assumption
Q ctx Assumption
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Apply typing well-formedness to the first premise:

0 — 0’
O’ ctx
Q'+ P type™
P ground

By Lemma (IAlgorithmic typing is w.ﬂ)
"

"

"

Now apply the well-formedness of subtyping to the second premise:

0’ ctx
P ground
©©1Q = ©'1Q

0" ctx

e — "
[©"][@']Q ground
[©”]Q ground

Above
Above
By Lemma (]Context application is idempotent[)

By Lemma (]Algorithmic subtyping is w.f.I)
"

"

By Lemma (IExtending context preserves groundness[)

Apply typing well-formedness to the last premise:

O” F N type~
0"+ [©"IN type~
©"1[0"IN = [©"IN

O FTlenv
O +Tenv

@// # @/I/
0" ctx

Restrict Q such that ®” extends to it:

" — Q

Q ctx
@/l/ :> Q
@// :> Q

Q10" ctx
0" — Q0"
Qe = Q

0 = Q0

QF P typet
Qe+ QP ="[(Q] 6P
@ — 0"
|8 - [QIP =" [(Q]@")]P

By Lemma D.4| (Context extension preserves w.fl)

By Lemma Applying context to the type preserves w.f.[)
By Lemma m Context application is idempotent[)
Assumption

By Lemma (]Weak context extension preserves w.f. envs[)

By Lemma (]Algorithmic typing is w.ﬂ)
"

Assumption
Assumption

By Lemma|C.1|{ (= subsumes —)

By Lemma Weak context extension is transitive|)

By Lemma (]Well—formedness of restricted contextsl)
"

"

By LemmalC.ll (|$ subsumes —|)
and Lemma [C.4] (Weak context extension is transitive)
By Lemma|C.5| (Weak context extension preserves well—formednessp
By Lemma F.3|(— leads to isomorphic types (ground))
By Lemma Context extension is transitive))
By Lemma Equality of declarative contexts|)

Applying the induction hypothesis to the first premise:

[©];TFv:[(Q] e")pP
19];T+v:P

By i.h. (term size decreases)
By Lemma (]Applying a context to a ground typel)
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Applying soundness to the second premise:

0 — Q)" By transitivity
0+ [O']1Q type" By Lemma WQOntext extension preserves w.f))
and Lemma |K3| (]Substitution preserves well-formedness of types[)
l@|FP<T[Q]©"e'1Q By Theorem [F.6 (]Soundness of algorithmic subtyping[)
@|FP<t[QO"]Q By Lemma F.4| (— leads to isomorphic types)
IO FP<T[QlQ By Lemma F.3|(— leads to isomorphic types (ground)l)

and Lemma [D.2| (Equality of declarative contexts)

Apply the induction hypothesis to the last premise:

©”];T Fs: [Q][©@"IN > M’ By i.h. (term size decreases)
1" F[QIM =~ M/ "

Reworking the spine declarative judgment:

e F [QIIe"IN =~ [QIN By Lemma = leads to isomorphic types[)
I©”];T Fs: [QIN > M” By Lemma [somorphic environments type the same terms[)
||®//|| '_ M/ %7 M/I 1

I8];TFs: [QIN > M" By Lemma (IEquality of declarative contexts[)

Applying the declarative judgment, we have:

18]};T Fv,s: [QIQ — [QIN > [Q]M  By|Dspinecon]

w IB]I;T Fwv,s: [QI(Q — N) > M” By definition of [—]—
e’ + KM= Mm" By Lemma (Declarative subtyping is transitive|)
= 1] F QM =" M” By Lemma (Equality of declarative contexts)

*Case g . N>MH4O  «¢FUV(N
O:TFs: (V. N)>M -0’

) — .
IAsplnetypeabsnotlnl

OF Va.N type™ Assumption

O,x - N type~ Inversion (|wafora|l|)

(@D)] OF N type™ By LemmalK;Zl (Type well-formed with type variable removed[)
and « ¢ FUV(N)

O](Va.N) = V. N Assumption

Va. [OIN = V. N By definition of [—]—
(2) [BIN =N By equality
3 O ctx Assumption
4 O FTenv Assumption
(5) e — O Assumption
6) Q ctx Assumption

Apply the induction hypothesis:
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1©];T Fs: [QIN > M’ By i.h. (term size stays the same and
the number of prenex quantifiers decreases)

w0 F QM= M/ "
Let P be an arbitrary positive type, such that Q + P type™:

[P/x]N =N As o ¢ FUV(N)
1©];T F s: [QI[P/«IN > M’ By equality
|©]I;T F s: [P/«][QIN > M’ By definition of [—]—

Applying the declarative judgment:

IO]|;T F s: Yo [QJN > M/ By Dspinetypeabs]
= I8];TF s: [Q](Va.N) > M’ By definition of [—]—

*Case g ks [@/0JN>M-4O,&[=P] «cFUV(N)

OTFs:(Va.N) > M40, &= P Spinctypeanem
O F Va. N type™ Assumption
O,x N type~ By [Twfforall
(1) ©6,at [&/aN type™ By Lemma (]Substitution preserves well-formedness of ty'pes[)
O](Va.N) = Va. N Assumption
[BIN =N By definition of [—]—

Ol[&/xN = [&/x]N & fresh
(2) [B,al[&d/«JN = [&/«]N By definition of [—]—

O ctx Assumption
3 0, & ctx By|waunso|vedguess|
O FTenv Assumption
0 — 06,& By|\/VcnewunsoIvedguess|
4 O, FTenv By Lemma |C_6| (]Weak context extension preserves w.f. envsl)
(5 Q ctx Assumption

Use well-formedness of the subderivation:

0,8 = O,&[=P] ByLemma (IAlgorithmic typing is w.ﬂ)

Obtain the solution to & from the complete context:

e ,&a=P — Q Assumption
Q=Q';&=P’ Inversion , since Q is a complete context
Q' a=P ctx Above
Q'+ P’ type" Inversion |D
P’ ground "
QF P’ type* By Lemmal|A.2, (1Term well-formedness Weakening[)
e,&a[=P] — QO Assumption
O',&[=P]+ P’ type* By Lemma Context extension maintains Variables[)
Q,&F P’ type" By Lemma Weak context extension maintains variablesl)
I8 + P’ type™ Since P’ ground
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Apply the induction hypothesis:

1O];T F s: [Q][&/aIN > M/

M= M’
1©;TFs: Q& =P]&/«N > M’

= [0 - Q

©];T+s: [P//ad[Q’,& = P'IN > M/
©;T F s: [P’/ad[QIN > M/
O];TF s: (Va. [QIN) > M/

= ©];T F s: [Q](Yo. N) > M/

O’ Completeness of typing

0O’.1 Lemmas

Lemma O.1 (Weak context extension maintains variables).

FUV(©) = FUV(©).

Proof. All rules ensure the left-hand side and right-hand side contexts have the same set of free universal

By i.h. (Term size stays the same and the number
of prenex universal quantifiers decreases. The
substitution replaces a positive type by another
positive type, so cannot add or remove prenex
universal quantifiers.)

1

Substituting Q = Q’, & = P’ from above

By definition of [—]—

Substituting Q = Q’, & = P’ from above

By |Dspinetypeabs

By definition of substitution

variables. Wcempty}, Wcuvar], [Wcunsolvedguess| Wcsolveguess], and [Wcsolvedguess| ensure the left-hand side

and right-hand side contexts have the same set of existential variables. The right-hand side context in the
[Wcnewunsolvedguess|and [Wcnewunsolvedguess|rules have a set of existential variables that is a superset of the

set of existential variables on the left-hand side context.

Lemma 0.2 (Reversing context extension from a complete context).

Proof. By rule induction on the Q — © judgment:

* Case
_) .
w - — - Assumption
* Case O -0

Qa6 — O, x

Subderivation
By i.h.

Q —06
® —Q

IfQO — Othen® — Q.
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w 0,0 — Q « By

* Case O -0

——————[Cunsolvedguess
0,6 — 0,4 £

Impossible since the LHS must be a complete context.

* Case 0O -0

e

Impossible since the LHS must be a complete context.

* Case

~ +
foereag
Q—0 Subderivation
@ —Q By i.h.
QIFP="Q Premise
e +P="Q By Lemma [D.2| (Equality of declarative contexts)
e +Q="P By definition of — - — = —

w 0,6=0Q — Q,&=P By|Csolvedguess

O

Lemma 0.3 (Pulling back restricted contexts). If® — ©'and®' | ©” — ©", then ®] @" — O

Proof. By rule induction on the ® — @’ judgment:

* Case

w -0 — @ Assumption
* Case /
® — 0

O, — O,

@/’ O(F@” SNy Y

O’ F @// N @///
0 = @// x
)
e = @///) x
0 — 0
e F C;)// N @///

Assumption

Inversion |l

"

"

Subderivation

By i.h.
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(©10"),0 — 0" & By|Cuvar
=3 0,x] 0" — 0" By |[uvar

* Case 0 — 0

[Cunsolvedguesd]
0,6 — 0,& Cunsolvedguess

* Case ’ —t
® — 0 O -P="Q
©.a_p 0. a= Q Csolvedguess|

Prove these two cases together.

O,&a[=P]|®" — @ Assumption

Taking cases on whether & [= Q] € ©"":

- Case&[=Q]€©":

010" — e Inversion ([guessin)
6//:@”’&[: Q] "
@/// — @///) & [: P] "
(e By i.h.
(© [ 0"),& — 0", &[=P] By Cunsolvedguess|/|Cso|vedguess

T
=3 &= H Q" — e By|lguessin

- Case[=Q] ¢ 0©":

@' 0" — @"" Inversion |i
©10” — @” Byih.

w ©O,&[=P][©®” — ©" By|lguessnotin

0’.2 Statement

Theorem 0.4 (Completeness of algorithmic typing). If ©ctx, © - 'env, ® — Q, and Q ctx, then:
* If||©];T'Fv:Pthen 30’ such that ©;"'+-v:P 40’ and ® — Q.
* If||©];"F t: N then 30’ such that ;T Ft: N 40’ and ® — Q.

s If|O];T F s: [QIN>M, © - Ntype™, and [BIN = N, then 30',Q’ and M’ such that ©;T F s :
N>MH40, 0 = Q/,0' — Q/, |0+ QM= M, [@'IM’'=M’, and Q' ctx.
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Proof. By mutual induction with Theorem (Soundness of algorithmic typing)), using the same judgment
ordering as in Lemma [J.1] (Tlsomorphic environments type the same terms).

* Case x:Perl

—— D
|©];TFx:P Dvar

x:Perl Premise
w O;FFx:P4© BylAvar
= 00— Q Assumption

e Case
I9];ix:PFt:N
DAab:
||@||;r|—?\XZP.t:P—>N

OFP—N type™ Assumption
OF N type™ Inversion l|
P — N ground Assumption
N ground By definition of ground
O ctx Assumption
© +Tenv Assumption
©FP—N type™ Assumption
OF P type* Inversion |l
P — N ground Assumption
P ground By definition of ground
©FTx:Penv By
@ — 0 Assumption
Q ctx Assumption
O;[x:PFt:NHO’ By i.h., for some context © (term size decreases)
= 0 —Q "

w O;TFAx:P.t:P—-N-O" By|Ahabs

" Case ||, oMt N

D
I8];TF Aa.t:Vo. N

1O, x||;T+t: N By definition of ||—||
O F Va.N type™ Assumption
O,xF N type™ By |Twfforall
Voa. N ground Assumption
N ground By definition of ground
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O ctx Assumption

0, x ctx By

© Tenv Assumption
@ — 0 Assumption
0,0 — Q,«x By
Q ctx Assumption
O, x ctx By
O,THt:NHO’ By i.h., for some context @’ (term size decreases)
0 — O,«x "
0'=0"« Inversion || for some context ©”
> 0 —Q "

O,x"+-t:NH40O",«  Substituting for @’
s O;TFAat:Va.N 40" Byl|Agen

*Case g|irkt:N

[l (g [N o
O ctx Assumption
O FTenv Assumption
® —Q Assumption
Q ctx Assumption
OTFt:NHO’ By i.h. (term size decreases)
i O — O "

w O;IH{t}: IN4©’ By|Athunk

* Case
l®];TFv:P
Dret
|©|;T + return v: TP

Symmetric to[Dthunk case.
*Case ygiirvi M O;TFs:M>1Q O FTP< TQ  [©];hx:PHt:N :
I©];T Fletx:P=v(s);t: N

© ctx Assumption

© FTenv Assumption

® —Q Assumption

Q ctx Assumption

O|;TEv: IM Subderivation

Apply the induction hypothesis to give a context ®’ such that:

Or'Fv: M0’ By i.h. (term size decreases)
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e —Q "

Applying well-formedness:

0 — 0’ By Lemma (]Algorithmic typing is w.ﬂ)
O’ ctx "
O’k M type* "
IM ground "

Rework the second premise so we can apply the induction hypothesis:

I8];TFs:M>TQ Premise
I8];TFs: [QIM > TQ By Lemma Applying a context to a ground typel)
1©];TFs: [QIM > TQ By Lemma Equality of declarative contexts)

Next show the antecedents of the second premise’s induction hypothesis:

O’ ctx Above
0 = 0 By Lemma — subsumes — )
O’ FTenv By Lemma Weak context extension preserves w.f. envs|)
0 —Q Above
Q ctx Above
Q@'+ M type~ Inversion (Twfshift]])
©TM =M By Lemma E' (Applying a context to a ground type|)

Apply the induction hypothesis to give a contexts ®”, Q' and a type Q’ such that:
OTks:M>TQ’'10"” Byi.h. (term size decreases)

Q ﬁ QI "

e — Q' 7

|| - Q11Q"="1Q !
[@//]TQI — TQI "

Q' ctx d

Applying well-formedness:

0 = 0" By Lemma (]Algorithmic typing is w.ﬂ)
@// CtX "
@I/ '_ TQ/ type_ 1
[@//]TQ/ — TQ/ 1

Now rework the third premise to match algorithmic rule. First show the third premise of the declarative
rule:

I8 FTP <~ TQ Premise
0 = 0" By Lemma Weak context extension is transitive))
1®”]+TP < TQ By Lemma Equality of declarative contexts (weak)
8”7+ [Q1TQ" = 1Q By Lemma Equality of declarative contexts (weak)
I®”|| F TP <~ TIQ'1Q’ By Lemma B.7| (Declarative subtyping is transitive)
@”]FP <*[QQ’ Inversion (<=DshiftT)

Show the antecedents of completeness:
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" ctx
e — Q'
Q' ctx

O+ P type"

0"+ P type*

0" F1Q’ type

0"+ Q' typet
P ground

©"17Q" = 7Q’
[@/I]Q/ — QI

Above
Above
Above

P annotation

By Lemma (IWeak context extension preserves well-formedness[)
Above

Inversion (TwfshiftT])

P annotation
Above
By definition of [—]—

A%)lying Theorem (Completeness of algorithmic subtyping), we have the following for some context
.

@I/ '_ P §+ QI _| @/Il

e — Q'

By Theorem H (]Completeness of algorithmic subtypingl)
1

Now appeal to the well-formedness of the algorithmic subtyping judgment:

Q" ctx
e — "
[©"]Q’ ground

By Lemma (]Algorithmic typing is w.fl)
1

"

Now show the fourth premise of the declarative rule:

10" F 1P <~ 1T[Q1Q’
0] TP <~ TQ’]Q’

0" FIQ1Q"<*P
”@///” - [_Q/][@///]Q/ §+ [-Q/]Ql
”@///” - [Q/][@///]Ql §+ P

Show the antecedents of completeness:

O ctx
Q" — Q'
Q' ctx
©” F P type*
@/// '_ Ql ty.pe+
@/// '7 [@///]Ql ty.pe+
[@"]1Q’ ground
e"P=P

Above

By Lemma Iﬁl (Equality of declarative contextsl)
Inversion (<=Dshift])
By LemmaF.4] (— leads to isomorphic types)

By Lemma (]Declarative subtyping is transitivel)

Above
Above
Above

By Lemma D.4| (Context extension preserves w.f.
By Lemma D.4{ (Context extension preserves w.f.
By Lemma Applying context to the type preserves W.f.l)

Above
By Lemma (]Applying a context to a ground type[)

A%)lying Theorem (Completeness of algorithmic subtyping), we have the following for some context
e":

e [@/II]QI §+ P4 @(4)

e — o’

By Theorem ﬁ (]Completeness of algorithmic subtypingl)
1

Now appeal to the well-formedness of the algorithmic subtyping judgment:
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0™ ctx By Lemma [K.5| (Algorithmic typing is w.f)
e @(4) "

Let the restricted context ©°) = ©“) | ©:

© — 00’ By Lemma (IWell-formedness of restricted contexts|)
00 ctx "
Q ctx Above
Q' etx Above
Q= Q' Above
Q—Q'1Q By Lemma (IWell-formedness of restricted contexts|)
QMo —Q By Lemma (IReversing context extension from a complete contextl)
oW — o’ Above
e¥ro —ao By Lemma [0.3| (Pulling back restricted contexts)
® —Q Above
eYre —Q By Lemma Identical restricted contexts)
ek — Substituting in definition of ©©)

Rework the final premise to match the algorithmic rule:

IO|;Tx:PFt:N Premise
@B hx:PHt:N By Lemma (Equality of declarative contexts)

Show the antecedents of the final premise’s induction hypothesis:

e — e’ Above
©F N type~ Assumption
©0B) - N type~ By Lemma@ (]Context extension preserves w.f.[)
N ground Assumption
00 ctx As shown above
ek — Above
Q ctx Assumption
© FTenv Assumption
0 = eV By Lemma — subsumes — )
00) FTenv By Lemma Weak context extension preserves w.f. envsl)
OF P typet P an annotation
OB) P type* By Lemma@ (Context extension preserves w.f)
P ground P an annotation

©0B) - x: Penv By

Apply the induction hypothesis, to give a context ©(®), such that:

= el — Q0 By i.h. (term size decreases)
OBsNx:PFt:N4O®) "

w O THletx:P=v(s);t: N40©) By [Aambiguouslet
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* Case I8];TFv: M

1©];hx:QFt:N

[©[;TFs:M>T1Q
YP.if |©];THs:M > TP then |©] + Q =" P

[©];T Flet x =v(s);t: N

O ctx
O FTenv
e —Q
Q ctx
I8ll;T - v: LM

Apply the induction hypothesis to give a context ®' such that:

D O;TFv: MO’

0 —Q
Applying well-formedness:
0 — 0
O’ ctx
O’ F M typet
IM ground

Assumption
Assumption
Assumption
Assumption
Subderivation

By i.h. (term size decreases)
"

By Lemma qugorithmic typing is w.ﬂ)
1

"

"

Rework the second premise so we can apply the induction hypothesis:

I8];TEs: M > TQ
O];T Fs: [QIM > TQ
[©];T Fs: [QIM > 1Q

Premise
By Lemma
By Lemma

IApplying a context to a ground type[)
Equality of declarative contexts[)

Next show the antecedents of the second premise’s induction hypothesis:

O’ ctx
e = O
@' FTenv
0 —Q
Q ctx
@' M type~
O'M=M

Above
By Lemma
By Lemma
Above
Above

Inversion (Twfshift]])

By Lemma D.5| (Applying a context to a ground type)

— subsumes — )
Weak context extension preserves w.f. envs)

Apply the induction hypothesis to give a contexts ®”, Q' and a type Q’ such that:

) ©;ls:M>1Q" 40"
0= Q'
" — Q'
0 F1Q1TQ" =" 1Q
©"1Q" =1Q’
Q' ctx

(3

Applying well-formedness:

@I # @//
FEV(7Q’) C FEV(M) U (FEV(©”) \ FEV(©"))
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By i.h. (term size decreases)
"

"
"
"

"

By Lemma (]Algorithmic typing is w.ﬂ)
"



" ctx
©” - 1Q" type~
©"11Q" = TQ’

From these conclusions we can deduce:

FEV(Q') C FEV(M) (FEV(©") \ FEV(0))

FEV(M) =
FEV(Q)CFEV( ")\ FEV(@')
FEV(©') C FEV(©")

) =0

FEV(Q') N FEV(©’

"
"

"

By definition of FEV and above

Since M ground

Substituting above equations

By Lemma (]Weak context extension maintains variables
By definition of C

Next prove by contradiction that we have Q' ground from the induction hypothesis. Assume FEV(Q’) # 0.

Necessarily true for some &, otherwise
Q’ would not be ground

]& and define Q" as the complete context obtained by taking Q' and substituting the & = R

context item with & = | TR. Now apply soundness to the algorithmic judgment but using Q" as the complete

Then:
4 & € FEV(Q')
Let R = [Q’
context:
O’ ctx
©’ FTenv
@// — Q//
O;TkEs:M>T1Q' 410"
Q[ FR type*
R ground
Q[ F TR type*
LTR ground
Q" ctx
O’'+ M type~
eM=M
1®];TEs: [Q"IM > Q"
H@/” - Q// %+ LO_//]TQ/
%) 18+ Q" ="[Q"Q’
Q= Q'
Q — QY

1©];T Fs: [Q"IM > Q"
1©;TFs: M > Q"

Now make use of the final premise:

el -Q="Q"
e +Q="1"1Q’

[le

O - 1QTTQ"="1Q
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Above

Above

Since (a) ®” — Q' and & € FEV(Q’) implies
(b) & is unsolved in ®"”

Above

Inversion (Cwfsolvedguess), for some prefix QO of Q'
(this is also a prefix of Q" by definition of Q")

1"

By [Twfshift]|and [Twfshift |

By definition of ground

By Q' ctx and above two statements
Above

Above

By Theorem [N (]Soundness of algorithmic typlngl)

(term size decreases)
1"

By Lemma (]Equality of declarative contexts|)
Above
Replacing the instance of [Wcsolveguess

By Lemma Equality of declarative contexts (weak)l)
By Lemma pplying a context to a ground type)

Instantiating final premise with P = Q”

Applying Lemma (]Declarative subtyping is transitivel)
to above and (5)

Applying Lemma (]Equality of declarative contextsl)
to (3)




0] FIQ1Q" =" Q
19| F[Q1Q" =" [Q"Q’

However:

|© FR%" IR

el - Q1Q" #" ["Q
This is a contradiction, hence Q' must be ground:
(6) FEV(Q') = 0

Next, restrict the output context of the spine judgment:

7 Let @ =0©" 6.
O ctx
" ctx
@ :> @l/

® — 0"
@/I/ ctx

Q ctx

Q' ctx

O = Q'
Q—Q'10Q

Q10 —Q

0" — Q'
eI — Q0
e — QO
e"'Me —Q
Q" — QO

Rework the third premise to match the algorithmic judgment:

[©];Gx:QFt:N
1]+ 1Q1TQ" =" TQ
1B];hFx:[Q1Q"Ft: N
[O];5x: Q" =t:N
©"];hx: Q" Ft:N

Next show the antecedents of the induction hypothesis:

@ " ctx

O FTenv

O FTenv

0"+ Q' typet
Q’ ground

@/// }_ QI type+
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Inversion 1|§iDshift ])

By LemmaM (Declarative subtyping is transitivel)

Must have the same number of shifts on both sides
of the declarative subtyping judgment
Since & € FEV(Q’) by (4)

Since Q' ground

Above
Above
Above

By Lemma (IWell—formedness of restricted contextsl)
"

Above

Above

Above

By Lemma Well-formedness of restricted contexts)

By Lemma eversing context extension from a complet
Above

By Lemma (]Pulling back restricted contextsl)
Above

By Lemma Identical restricted contexts[)
Substituting in definition of ®"”

Premise

Above

By Lemma (]Isomorphic environments type the same tern
By Lemma Applying a context to a ground type[)

By Lemma Equality of declarative contexts)

Above

Above

By Lemma |C.6| (IWeak context extension preserves w.f. envsl)

Inversion 1|washift: ])

Above
By definition of restricted context ©"’ and since Q' ground




0" FLx:Q’env

Q" — Q
Q ctx
I®";hx: Q" Ft:N
OF N type™
O" N type~
N ground

Applying the induction hypothesis, we have for a context @(4):

(8) " Tx: Q' Ft:N40®
= o4 — 0
= O;THletx =v(s);t: N 40"

* Case

Dspinenil
||®||;FF€:N>>Nm

By Eviad

Above

Above

Above

Assumption

By ® — O’ and Lemma (]Context extension preserves
Assumption

By i.h. (term size decreases)
"

Applying |Aunambiguouslet{to (1), (2), (6), (7), and (8)

The output context will be ©, the complete context will be O, and the output type will be M.

= O;T+Fe:N>N-H0O Byl|Aspinenil

= Q=20 By Lemma (]Weak context extension is reﬂexivel)
= ® — Q Assumption

18] F [Q]BIN =~ [BIN By Lemma (] — leads to isomorphic types[)

= [BIN =N Assumption

= 18] F [QIN =" N Substituting in above equation

= [BIN =N Assumption

= Q ctx Assumption

*Case girkviP O FP <t [QIQ

1©];TFs: [QIN > M

19];TFv,s:[Q(Q = N)>M

O ctx

O FTenv
e —Q

Q ctx

Assumption
Assumption
Assumption
Assumption

Dspinecons

By the induction hypothesis for the first premise, there exists a context ©’, such that:

O;TFv:PH0O’
e — Q0

By i.h. (term size decreases)

"

Apply well-formedness to this algorithmic judgment:

By Lemma (IAlgorithmic typing is w.ﬂ)

e — 0O
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0’ ctx
OF P type"
P ground

Now use completeness of subtyping:

e[+ P <"[Q]Q
@[l =P <" [Q]Q
@l =P <" Q]e1Q

O’ - P type*

OF Q — N type~

OF Q type"

O’ Q type*

0’ + [©']Q type*
P ground

©10]1Q = [©'1Q

®'FP<'[@1Q-0"

e — QO

Applying well-formedness:
0" ctx
0 — @
[©”][©']Q ground

"
"

"

Above
Above
Above

Subderivation
By Lemma (Equality of declarative contexts[)
By Lemma|F.4](— leads to isomorphic types)

By Lemma (]Context extension preserves V\I.f.l)
Assumption

By Lemma [D.4| (Context extension preserves w.f))

By Lemma (Applying context to the type preserves w.f.[)
Above

By Lemma (]Context application is idempotenq)

By Theorem (]Completeness of algorithmic subtypingl)
"

By Lemma (]Algorithmic subtyping is w.f.[)
"

"

Next rework the third premise to match the algorithmic rule:

1©”];TFs: [QIN > M

[©”] - [QIe"IN="[Q]N

197;T + s: [QIO"IN > M’

| FM ="M’

By Lemma
By Lemma
By Lemma

"

(IEquality of declarative contextsl)
— leads to isomorphic types)
[somorphic environments type the same termsl)

Now show the antecedents of the third premise’s induction hypothesis:

" ctx
© FTenv
®" FTenv

®FP— N type™
©F N type~

0 — 0"
O” F N type~
0"+ [@”IN type~

[@//] [@//]N — [@l/]N

Above
Assumption
By Lemma (]Weak context extension preserves w.f. envsl)

Assumption

By [Fufarron]

By Lemma

By Lemma|D.4
By Lemma

By Lemma (IContext application is idempotentl)

Context extension is transitive])
Context extension preserves w.fJ)
pplying context to the type preserves w.f.[)
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e —QO By i.h. (term size decreases)
Q ctx Assumption

Now zg:ply the induction hypothesis to this third premise. This gives the following for some contexts @,

Q' and type M"":
©";TFs:[@"IN>M"-H0" Byih. (term size decreases)

- Q=0 4
. Q" — Q' "

||®//|| }_ [Q/]M// ~ MI "
= [@///]M// — M/l "
= Q' ctx "

9] F QM =~ M By Lemma Declarative subtyping is transitive|)

= 1] F [QIM” =~ M By Lemma Equality of declarative contexts)

Finally, apply the algorithmic judgment:
= ©;THv,s:P—=N>M"”40" By|Aspinecons|

* Case gk Piypet  [@];TFs: [P/d([QIN) > M
1O];TF s: [Q](Va. N) > M

Dspinetypeabs|

Take cases on whether « € FUV(N)
— Case o ¢ FUV(N):

[P/« ([QIN) = [QIN By o ¢ FUV(N)

1O];TFs: [QIN>M By equality

O F Va.N type™ Assumption

O, N type™ By [Twfforall
OF N type™ By « ¢ FUV(N) and Lemma ql"ype well-formed with type variable removed

O](Va.N) = V. N Assumption

[®IN =N By definition of [—]—

O ctx Assumption

O FTenv Assumption

® —Q Assumption

Q ctx Assumption

By the induction hypothesis we have contexts ©’, Q' and type M’, such that:

= Q= Q' By i.h. (Term size stays the same and the number of
prenex universal quantifiers decreases. Since applying
the context only replaces positive types by positive
types, it cannot change the number of prenex
universal quantifiers.)

= e — Q' "

134



w O F QM =M
= 1M =M’
= Q' ctx

O;l'-s:N>M'40’
Applying the algorithmic judgment:
= O;TFs:Vo.N > M40’

— Case «x € FUV(N):

"

"

"

"

By |Aspinetypea bsnoti n|

First rework the premise to match the algorithmic rule:

[©]];T + s: [P/a«]([QIN ) >M
N) > M P ground and Lemma (]Applying a context to a ground typel)
By definition of [—]—

[O[;T + s: [AIP/] (IO

[O©[;T F s: [Q]([P/a]N )>>M

[Q,& =P|(©,8);[Q,& =PIl Fs5:[Q,& = PI([&/a]N) > M For fresh &

Now show the antecedents of the induction hypothesis:

O+ Va. N type™
O,k N type™
0,&F [&/aN type~

O](Voe.N) = V. N
[BIN =N

[&/a]([OIN) = [&/aIN
[&/a]N
[&/a]N

[©](
[©, &l(

&/

[&/aN) =
[&/aN) =

O ctx
O, & ctx

@ =0

0 = 06,&
O FTenv

O,& FTenv

e — QO

0,8 — Q,&="P

Q ctx

P ground

O] - P type ™"
QF P typet

Q,&8 =P ctx

Assumption

By |Twfforall
By Lemma [K.3 (]Substitution preserves well-formedness of types[)

Assumption

By definition of [—]—
By equality

& fresh

By definition of [—]—

Assumption
By|waunsoIvedguess|

By Lemma m (Weak context extension is reflexivel)
By Wcnewunsolvedguess|
Assumption
By® — O, & and
Lemma (Weak context extension preserves w.f. envs)

Assumption
By[Coolveguess

Assumption

P declarative type

Premise

Since ® — Q, and context extension cannot add
or remove universal variables

By |Cwfsolvedguess|
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Applying the induction hypothesis, we have contexts @', Q' and a type M’, such that:

Q,6=P = Q'
= e — Q'
w9 F QM =T M
= O'TM’' =M’
= Q' ctx

O,&TFs:[&/«N>M 46’

Q,6=P = Q'
Q=20

Q= Q,a=P
= Q= Q'

Finally, applying the algorithmic judgment:
= O;TFs: (V. N) > M’ 40’

By i.h. (Term size stays the same and the number of
prenex universal quantifiers decreases. Since applying
the context only replaces positive types by positive
types, it cannot change the number of prenex

universal quantifiers.)
1

"
"
"

"

Above

By Lemma |ﬁ| (Weak context extension is reﬂexive|)
By |Wc newsolvedguess|

By Lemma [C.4] (Weak context extension is transitive)

By|Aspinetypeabsin
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