
Lemmas and proofs for “Implicit Polarized F: local type
inference for impredicativity”

Henry Mercer
henry@henrymercer.name

Cameron Ramsay
cfr26@cantab.ac.uk

Neel Krishnaswami
nk480@cl.cam.ac.uk

March 3, 2022

Contents

Definitions 3

Lemmas 10

A Weakening 10

B Declarative subtyping 10
B.1 Isomorphic types . 10
B.2 Transitivity . 11

C Weak context extension 11

D Context extension 11

E Well-formedness of subtyping 12

F Soundness of subtyping 12
F.1 Lemmas for soundness . 12
F.2 Statement . 13

G Completeness of subtyping 13
G.1 Lemmas for completeness . 13
G.2 Statement . 14

H Determinism of subtyping 14

I Decidability of subtyping 14
I.1 Lemmas for decidability . 14
I.2 Statement . 14

J Isomorphic types 14

K Well-formedness of typing 15

L Determinism of typing 15

1

mailto:henry@henrymercer.name
mailto:cfr26@cantab.ac.uk
mailto:nk480@cl.cam.ac.uk

M Decidability of typing 15

N Soundness of typing 15
N.1 Lemmas . 15
N.2 Statement . 16

O Completeness of typing 16
O.1 Lemmas . 16
O.2 Statement . 16

Proofs 16

A’ Weakening 16

B’ Declarative subtyping 22
B’.1 Isomorphic types . 27
B’.2 Transitivity . 33

C’ Weak context extension 36

D’ Context extension 43

E’ Well-formedness of subtyping 49

F’ Soundness of subtyping 55
F’.1 Lemmas for soundness . 55
F’.2 Statement . 60

G’ Completeness of subtyping 65
G’.1 Lemmas for completeness . 65
G’.2 Statement . 67

H’ Determinism of subtyping 74

I’ Decidability of subtyping 76
I’.1 Lemmas for decidability . 76
I’.2 Statement . 79

J’ Isomorphic types 82

K’ Well-formedness of typing 86

L’ Determinism of typing 100

M’ Decidability of typing 100

N’ Soundness of typing 103
N’.1 Lemmas . 103
N’.2 Statement . 108

O’ Completeness of typing 121
O’.1 Lemmas . 121
O’.2 Statement . 123

2

Definitions

Values v ::= x | {t}

Computations t ::= λx : P. t | Λα. t | return v |

let x = v(s); t | let x : P = v(s); t

Argument lists s ::= ε | v, s

Positive types P ::= α | ↓N
Negative types N ::= P → N | ∀α.N | ↑P

Typing contexts Θ ::= · | Θ,α
Typing environments Γ ::= · | Γ, x : P

Figure 1: Implicit Polarized F

Θ ` A type± In the context Θ, A is a well-formed positive/negative type

α ∈ Θ
Θ ` α type+

Twfuvar
Θ ` N type−

Θ ` ↓N type+
Twfshift↓ Θ,α ` N type−

Θ ` ∀α.N type−
Twfforall

Θ ` P type+ Θ ` N type−

Θ ` P → N type−
Twfarrow

Θ ` P type+

Θ ` ↑P type−
Twfshift↑

Figure 2: Well-formedness of declarative types

3

Θ; Γ ` e : A The term e synthesizes the type A

Θ; Γ ` s : N�M
When passed to a head of type N, the argument list s synthesizes
the type M

x : P ∈ Γ
Θ; Γ ` x : P

Dvar
Θ; Γ ` t : N
Θ; Γ ` {t} : ↓N Dthunk

Θ; Γ, x : P ` t : N
Θ; Γ ` λx : P. t : P → N

Dλabs
Θ,α; Γ ` t : N

Θ; Γ ` Λα. t : ∀α.N
Dgen

Θ; Γ ` v : P
Θ; Γ ` return v : ↑P Dreturn

Θ; Γ ` v : ↓M Θ; Γ ` s :M� ↑Q Θ ` ↑Q ≤− ↑P Θ; Γ, x : P ` t : N
Θ; Γ ` let x : P = v(s); t : N

Dambiguouslet

Θ; Γ ` v : ↓M
Θ; Γ ` s :M� ↑Q Θ; Γ, x : Q ` t : N ∀P. if Θ; Γ ` s :M� ↑P then Θ ` Q ∼=

+ P

Θ; Γ ` let x = v(s); t : N
Dunambiguouslet

Θ; Γ ` ε : N� N
Dspinenil

Θ; Γ ` v : P Θ ` P ≤+ Q Θ; Γ ` s : N�M

Θ; Γ ` v, s : (Q→ N)�M
Dspinecons

Θ ` P type+ Θ; Γ ` s : [P/α]N�M

Θ; Γ ` s : (∀α.N)�M
Dspinetypeabs

Figure 3: Declarative type system

Θ ` A ≤± B In the context Θ, A is a positive/negative declarative subtype of B

Θ ` α type+

Θ ` α ≤+ α
≤±Drefl

Θ `M ≤− N Θ ` N ≤− M

Θ ` ↓N ≤+ ↓M ≤±Dshift↓ Θ,α ` N ≤− M

Θ ` N ≤− ∀α.M
≤±Dforallr

Θ ` P type+ Θ ` [P/α]N ≤− M

Θ ` ∀α.N ≤− M
≤±Dforalll

Θ ` Q ≤+ P Θ ` N ≤− M

Θ ` P → N ≤− Q→M
≤±Darrow

Θ ` Q ≤+ P Θ ` P ≤+ Q

Θ ` ↑P ≤− ↑Q ≤±Dshift↑

Figure 4: Declarative subtyping

4

Θ ` A ∼=
± B In the context Θ, the types A and B are isomorphic

Θ ` A ∼=
± B iff Θ ` A ≤± B and Θ ` B ≤± A.

Figure 5: Isomorphic types

Θ ` Γ1 ∼= Γ2 In the context Θ, the environments Γ1 and Γ2 are isomorphic

Θ ` · ∼= ·
Eisoempty

Θ ` Γ1 ∼= Γ2 Θ ` P ∼=
+ Q

Θ ` Γ1, x : P ∼= Γ2, x : Q
Eisovar

Figure 6: Isomorphic environments

[Θ]A Applying a context Θ, as a substitution, to a type A

[·]A = A

[Θ,α]A = [Θ]A

[Θ, α̂]A = [Θ]A

[Θ, α̂ = P]A = [Θ]([P/α̂]A)

Figure 7: Applying a context to a type

Positive types P ::= . . . | α̂

Contexts Θ ::= . . . | Θ, α̂ | Θ, α̂ = P

Figure 8: Additions to declarative types and contexts to form their algorithmic counterparts

5

Θ ` A ≤± B a Θ ′ In the context Θ, A checks algorithmically as a subtype of B,
producing the context Θ ′

ΘL, α,ΘR ` α ≤+ α a ΘL, α,ΘR

≤±Arefl
ΘL ` P type+ P ground

ΘL, α̂, ΘR ` P ≤+ α̂ a ΘL, α̂ = P,ΘR

≤±Ainst

Θ `M ≤− N a Θ ′ Θ ′ ` N ≤− [Θ ′]M a Θ ′′

Θ ` ↓N ≤+ ↓M a Θ ′′ ≤±Ashift↓
Θ, α̂ ` [α̂/α]N ≤− M a Θ ′, α̂[= P] M 6= ∀β.M ′

Θ ` ∀α.N ≤− M a Θ ′
≤±Aforalll

Θ,α ` N ≤− M a Θ ′, α
Θ ` N ≤− ∀α.M a Θ ′

≤±Aforallr

Θ ` Q ≤+ P a Θ ′ Θ ′ ` [Θ ′]N ≤− M a Θ ′′

Θ ` P → N ≤− Q→M a Θ ′′
≤±Aarrow

Θ ` Q ≤+ P a Θ ′ Θ ′ ` [Θ ′]P ≤+ Q a Θ ′′

Θ ` ↑P ≤− ↑Q a Θ ′′ ≤±Ashift↑

Figure 9: Algorithmic subtyping

Θ ′ � Θ Θ ′ restricted to only contain existential variables which appear in Θ

·� · = ·
�empty

Θ ′ � Θ = Θ ′′

Θ ′, α� Θ,α = Θ ′′, α
�uvar

Θ ′ � Θ = Θ ′′

Θ ′, α̂ [= P]� Θ, α̂ [= Q] = Θ ′′, α̂ [= P]
�guessin

Θ ′ � Θ = Θ ′′ α̂ [= Q] /∈ Θ
Θ ′, α̂ [= P]� Θ = Θ ′′

�guessnotin

Figure 10: Definition of context restriction

6

Θ; Γ ` e : A a Θ ′ The term e synthesizes the type A, producing the context Θ ′

Θ; Γ ` s : N�M a Θ ′ When passed to a head of type N, the argument list s synthesizes
the type M, producing the context Θ ′

x : P ∈ Γ
Θ; Γ ` x : P a Θ

Avar

Θ; Γ, x : P ` t : N a Θ ′

Θ; Γ ` λx : P. t : P → N a Θ ′
Aλabs

Θ,α; Γ ` t : N a Θ ′, α
Θ; Γ ` Λα. t : ∀α.N a Θ ′

Agen

Θ; Γ ` t : N a Θ ′

Θ; Γ ` {t} : ↓N a Θ ′ Athunk
Θ; Γ ` v : P a Θ ′

Θ; Γ ` return v : ↑P a Θ ′ Areturn

Θ; Γ ` v : ↓M a Θ ′ Θ ′; Γ ` s :M� ↑Q a Θ ′′ Θ ′′ ` P ≤+ Q a Θ ′′′

Θ ′′′ ` [Θ ′′′]Q ≤+ P a Θ(4) Θ(5) = Θ(4) � Θ Θ(5); Γ, x : P ` t : N a Θ(6)

Θ; Γ ` let x : P = v(s); t : N a Θ(6)
Aambiguouslet

Θ; Γ ` v : ↓M a Θ ′
Θ ′; Γ ` s :M� ↑Q a Θ ′′ FEV(Q) = ∅ Θ ′′′ = Θ ′′ � Θ Θ ′′′; Γ, x : Q ` t : N a Θ(4)

Θ; Γ ` let x = v(s); t : N a Θ(4)
Aunambiguouslet

Θ; Γ ` ε : N� N a Θ
Aspinenil

Θ; Γ ` v : P a Θ ′ Θ ′ ` P ≤+ [Θ ′]Q a Θ ′′ Θ ′′; Γ ` s : [Θ ′′]N�M a Θ ′′′

Θ; Γ ` v, s : Q→ N�M a Θ ′′′
Aspinecons

Θ; Γ ` s : N�M a Θ ′ α /∈ FUV(N)

Θ; Γ ` s : (∀α.N)�M a Θ ′
Aspinetypeabsnotin

Θ, α̂; Γ ` s : [α̂/α]N�M a Θ ′, α̂ [= P] α ∈ FUV(N)

Θ; Γ ` s : (∀α.N)�M a Θ ′, α̂ [= P]
Aspinetypeabsin

Figure 11: Algorithmic type system

7

Θ ctx Θ is a well-formed context

· ctx
Cwfempty

Θ ctx
Θ,α ctx

Cwfuvar
Θ ctx
Θ, α̂ ctx

Cwfunsolvedguess

Θ ctx Θ ` P type+ P ground
Θ, α̂ = P ctx

Cwfsolvedguess

Figure 12: Well-formedness of contexts

Θ ` A type± In the context Θ, A is a well-formed positive/negative type

α̂ ∈ EV(Θ)
Θ ` α̂ type+

Twfguess

Figure 13: Additional well-formedness rules for algorithmic types. EV(Θ) contains all the existential type
variables in Θ, independently of whether they are solved or unsolved.

Θ −→ Θ ′ Θ extends to Θ ′

· −→ ·
Cempty

Θ −→ Θ ′

Θ,α −→ Θ ′, α
Cuvar

Θ −→ Θ ′

Θ, α̂ −→ Θ ′, α̂
Cunsolvedguess

Θ −→ Θ ′

Θ, α̂ −→ Θ ′, α̂ = P
Csolveguess

Θ −→ Θ ′ ‖Θ‖ ` P ∼=
+ Q

Θ, α̂ = P −→ Θ ′, α̂ = Q
Csolvedguess

Figure 14: Context extension

Θ =⇒ Θ ′ The context Θ ′ weakly extends the context Θ ′

· =⇒ ·
Wcempty

Θ =⇒ Θ ′

Θ,α =⇒ Θ ′, α
Wcuvar

Θ =⇒ Θ ′

Θ, α̂ =⇒ Θ ′, α̂
Wcunsolvedguess

Θ =⇒ Θ ′

Θ, α̂ =⇒ Θ ′, α̂ = P
Wcsolveguess

Θ =⇒ Θ ′ ‖Θ‖ ` P ∼=
+ Q

Θ, α̂ = P =⇒ Θ ′, α̂ = Q
Wcsolvedguess

Θ =⇒ Θ ′

Θ =⇒ Θ ′, α̂
Wcnewunsolvedguess

Θ =⇒ Θ ′

Θ =⇒ Θ ′, α̂ = P
Wcnewsolvedguess

Figure 15: Weak context extension. We highlight the rules that are “new” compared with context extension.

8

Θ ` Γ env The environment Γ is well-formed with respect to the context Θ

Θ ` · env
Ewfempty

Θ ` Γ env Θ ` P type+ P ground
Θ ` Γ, x : P env

Ewfvar

Figure 16: Well-formedness of typing environments

|A|NQ The size of a type A, ignoring quantification

|α|NQ = 1

|α̂|NQ = 1

|↓N|NQ = |N|NQ + 1

|∀α.N|NQ = |N|NQ

|P → N|NQ = |P|NQ + |N|NQ + 1

|↑P|NQ = |P|NQ + 1

Figure 17: The size of a type, ignoring universal quantification

NPQ(A) The number of prenex quantifiers in a type A

NPQ(α) = 0

NPQ(α̂) = 0

NPQ(↓N) = 0

NPQ(∀α.N) = 1+ NPQ(N)

NPQ(P → N) = 0

NPQ(↑P) = 0
Figure 18: The number of prenex quantifiers in a type A

‖Θ‖ The declarative context corresponding to the algorithmic context Θ

‖·‖ = · ‖Θ,α‖ = ‖Θ‖ , α ‖Θ, α̂‖ = ‖Θ‖ ‖Θ, α̂ = P‖ = ‖Θ‖

Figure 19: Producing a declarative context from an algorithmic context

System F types

JA→ BK = ↓(JAK → ↑JBK)
J∀α.AK = ↓∀α. ↑JAK

System F terms

JxK = return x

Jλx : A. eK = return {λx : JAK. JeK}
Je1 e2K = let f[: P] = {Je1K};

let x[: Q] = {Je2K};
let y[: R] = f x;

return y

JΛα. eK = Λα. JeK
Je [A]K = JeK

Figure 20: An embedding of typeable terms in System F under a call-by-value evaluation order in Implicit
Polarized F.

9

Lemmas

A Weakening

Lemma A.1 (Pushing uvars right preserves w.f.). Let Θ[ΘM] abbreviate ΘL, ΘM, ΘR. Then if Θ[α,ΘM] `
A type±, Θ[ΘM, α] ` A type±.

Lemma A.2 (Term well-formedness weakening). If Θ ` A type± then Θ,Θ ′ ` A type±.

Lemma A.3 (Pushing uvars right in declarative judgment). Let Θ[ΘM] abbreviate ΘL, ΘM, ΘR. Then if
Θ[α,ΘM] ` A ≤± B, Θ[ΘM, α] ` A ≤± B.

Lemma A.4 (Declarative subtyping weakening). If Θ ` A ≤± B then Θ,Θ ′ ` A ≤± B.

B Declarative subtyping

Lemma B.1 (Declarative subtyping is reflexive). If Θ ` A type± then Θ ` A ≤± A.

Lemma B.2 (Declarative substitution w.f.). If ΘL, ΘR ` P type+ and ΘL, α,ΘR ` A type±, then ΘL, ΘR `
[P/α]A type±.

Lemma B.3 (Declarative subtyping is stable under substitution). If ΘL, ΘR ` P type+, then:

• If ΘL, α,ΘR ` Q type+, ΘL, α,ΘR ` R type+, and ΘL, α,ΘR ` Q ≤+ R, then ΘL, ΘR ` [P/α]Q ≤+

[P/α]R.

• If ΘL, α,ΘR ` N type−, ΘL, α,ΘR ` M type−, and ΘL, α,ΘR ` N ≤− M, then ΘL, ΘR ` [P/α]N ≤−

[P/α]M.

Lemma B.4 (Symmetry of positive declarative subtyping). If Θ ` P ≤+ Q then Θ ` Q ≤+ P by a derivation
of equal height.

B.1 Isomorphic types

Lemma B.5 (Mutual subtyping substitution). Given Θ, #–α ` #–

P type+ and Θ,
#–

β ` #–

Q type+:

• If:

1. Θ, #–α ` R type+

2. Θ,
#–

β ` S type+

3. Θ, #–α ` R ≤+ [
–

P/β]S

4. Θ,
#–

β ` S ≤+ [
–

Q/α]R

then:

1. ∀βi ∈
#–

β.βi ∈ FUV(S) =⇒
∃γ. Pi = γ

2. ∀αi ∈ #–α.αi ∈ FUV(R) =⇒
∃γ.Qi = γ

• If:

1. Θ, #–α `M type−

2. Θ,
#–

β ` N type−

3. Θ, #–α ` [
–

P/β]N ≤− M

4. Θ,
#–

β ` [
–

Q/α]M ≤− N

then:

1. ∀βi ∈
#–

β.βi ∈ FUV(N) =⇒
∃γ. Pi = γ

2. ∀αi ∈ #–α.αi ∈ FUV(M) =⇒
∃γ.Qi = γ

10

Lemma B.6 (Isomorphic types are the same size). If:

1. Θ ` A type+

2. Θ ` B type+

3. Θ ` A ∼=
± B

then |A|NQ = |B|NQ.

B.2 Transitivity

Lemma B.7 (Declarative subtyping is transitive). If Θ ` A type±, Θ ` B type±, Θ ` C type±, Θ ` A ≤± B,
and Θ ` B ≤± C, then Θ ` A ≤± C.

C Weak context extension

Lemma C.1 (=⇒ subsumes −→). If Θ −→ Θ ′, then Θ =⇒ Θ ′.

Lemma C.2 (Weak context extension is reflexive). For all contexts Θ, Θ =⇒ Θ.

Lemma C.3 (Equality of declarative contexts (weak)). If Θ =⇒ Θ ′, then ‖Θ‖ = ‖Θ ′‖.

Lemma C.4 (Weak context extension is transitive). If Θ =⇒ Θ ′ and Θ ′ =⇒ Θ ′′, then Θ =⇒ Θ ′′.

Lemma C.5 (Weak context extension preserves well-formedness). If Θ ` A type± and Θ =⇒ Θ ′ then
Θ ′ ` A type±.

Lemma C.6 (Weak context extension preserves w.f. envs). If Θ =⇒ Θ ′ and Θ ` Γ env, then Θ ′ ` Γ env.

Lemma C.7 (The extended context makes the type ground (weak)). If Θ ctx, Θ ′ ctx, Θ =⇒ Θ ′, and [Θ ′][Θ]A
ground, then [Θ ′]A ground.

Lemma C.8 (Extending context preserves groundness (weak)). If Θ ctx, Θ ′ ctx, Θ =⇒ Θ ′, and [Θ]A ground,
then [Θ ′]A ground.

D Context extension

Lemma D.1 (Context extension is reflexive). For all contexts Θ, Θ −→ Θ.

Lemma D.2 (Equality of declarative contexts). If Θ −→ Θ ′, then ‖Θ‖ = ‖Θ ′‖.

Lemma D.3 (Context extension is transitive). If Θ −→ Θ ′ and Θ ′ −→ Θ ′′, then Θ −→ Θ ′′.

Lemma D.4 (Context extension preserves w.f.). If Θ ` A type± and Θ −→ Θ ′, then Θ ′ ` A type±.

Lemma D.5 (Applying a context to a ground type). If A ground, then [Θ]A = A.

Lemma D.6 (Context application is idempotent). If Θ ctx, then [Θ][Θ]A = [Θ]A.

Lemma D.7 (The extended context makes the type ground). IfΘ ctx, Θ ′ ctx, Θ −→ Θ ′, and [Θ ′][Θ]A ground,
then [Θ ′]A ground.

Lemma D.8 (Extending context preserves groundness). If Θ ctx, Θ ′ ctx, Θ −→ Θ ′, and [Θ]A ground, then
[Θ ′]A ground.

11

E Well-formedness of subtyping

Lemma E.1 (Applying context to the type preserves w.f.). If Θ ctx and Θ ` A type±, then Θ ` [Θ]A type±.

Lemma E.2 (Algorithmic subtyping is w.f.).

• If Θ ` P ≤+ Q a Θ ′, Θ ctx, P ground, and [Θ]Q = Q, then Θ ′ ctx, Θ −→ Θ ′, and [Θ ′]Q ground.

• If Θ ` N ≤− M a Θ ′, Θ ctx, M ground, and [Θ]N = N, then Θ ′ ctx, Θ −→ Θ ′, and [Θ ′]N ground.

F Soundness of subtyping

F.1 Lemmas for soundness

Lemma F.1 (Completing context preserves w.f.). If Θ ` A type± and A ground then ‖Θ‖ ` A type±.

Lemma F.2 (=⇒ leads to isomorphic types). If:

1. Θ ` A type±

2. Θ =⇒ Θ ′

3. [Θ ′]A ground

4. Θ ctx

5. Θ ′ ctx

then ‖Θ‖ ` [Θ ′][Θ]A ∼=
± [Θ ′]A.

Lemma F.3 (=⇒ leads to isomorphic types (ground)). If:

1. Θ ` A type±

2. [Θ]A ground

3. Θ =⇒ Θ ′

4. Θ ctx

5. Θ ′ ctx

then ‖Θ‖ ` [Θ]A ∼=
± [Θ ′]A.

Lemma F.4 (−→ leads to isomorphic types). If:

1. Θ ` A type±

2. Θ −→ Θ ′

3. [Θ ′]A ground

4. Θ ctx

5. Θ ′ ctx

12

then ‖Θ‖ ` [Θ ′][Θ]A ∼=
± [Θ ′]A.

Lemma F.5 (−→ leads to isomorphic types (ground)). If:

1. Θ ` A type±

2. [Θ]A ground

3. Θ −→ Θ ′

4. Θ ctx

5. Θ ′ ctx

then ‖Θ‖ ` [Θ]A ∼=
± [Θ ′]A.

F.2 Statement

Theorem F.6 (Soundness of algorithmic subtyping). Given a well-formed algorithmic context Θ and a well-
formed complete context Ω:

• If Θ ` P ≤+ Q a Θ ′, Θ ′ −→ Ω, P ground, [Θ]Q = Q, Θ ` P type+, and Θ ` Q type+,
then ‖Θ‖ ` P ≤+ [Ω]Q.

• If Θ ` N ≤− M a Θ ′, Θ ′ −→ Ω, M ground, [Θ]N = N, Θ ` N type−, and Θ `M type−,
then ‖Θ‖ ` [Ω]N ≤− M.

G Completeness of subtyping

G.1 Lemmas for completeness

Lemma G.1 (Completion preserves w.f.). If Θ ctx, Θ ` A type±, and Θ −→ Ω, then ‖Θ‖ ` [Ω]A type±.

Lemma G.2 (Extension solving guess). If ΘL, α̂, ΘR −→ ΩL, α̂ = Q,ΩR and [ΩL]ΘL ` P ∼=
+ Q, then

ΘL, α̂ = P,ΘR −→ ΩL, α̂ = Q,ΩR.

Lemma G.3 (Context extension substitution size). If:

1. Θ ctx

2. Θ ` A type±

3. Θ −→ Ω

4. Ω ctx

then |[Ω][Θ]A|NQ = |[Ω]A|NQ.

Lemma G.4 (Context extension ground substitution size). If:

1. Θ ctx

2. Θ ` A type±

3. [Θ]A ground

4. Θ −→ Ω

5. Ω ctx

then |[Θ]A|NQ = |[Ω]A|NQ.

13

G.2 Statement

Theorem G.5 (Completeness of algorithmic subtyping). If Θ ctx, Θ −→ Ω, and Ω ctx, then:

• If ‖Θ‖ ` P ≤+ [Ω]Q, Θ ` P type+, Θ ` Q type+, P ground, and [Θ]Q = Q, then ∃Θ ′ such that
Θ ` P ≤+ Q a Θ ′ and Θ ′ −→ Ω.

• If ‖Θ‖ ` [Ω]N ≤− M, Θ ` M type−, Θ ` N type−, M ground, and [Θ]N = N, then ∃Θ ′ such that
Θ ` N ≤− M a Θ ′ and Θ ′ −→ Ω.

H Determinism of subtyping

Lemma H.1 (Algorithmic subtyping is deterministic).

• If Θ ` P ≤+ Q a Θ ′1 and Θ ` P ≤+ Q a Θ ′2, then Θ ′1 = Θ ′2.

• If Θ ` N ≤− M a Θ ′1 and Θ ` N ≤− M a Θ ′2, then Θ ′1 = Θ ′2.

I Decidability of subtyping

I.1 Lemmas for decidability

Lemma I.1 (Completed non-ground size bounded by ground size).

• If Θ ` P ≤+ Q a Θ ′, Θ ctx, P ground, and [Θ]Q = Q, then |[Θ ′]Q|NQ ≤ |P|NQ.

• If Θ ` N ≤− M a Θ ′, Θ ctx, M ground, and [Θ]N = N, then |[Θ ′]N|NQ ≤ |M|NQ.

I.2 Statement

Lemma I.2 (Decidability of algorithmic subtyping). There exists a total order @ on well-formed algorithmic
subtyping judgments such that for each derivation with subtyping judgment premises Ai and conclusion B, each
Ai compares less than B, i.e. ∀i. Ai @ B.

J Isomorphic types

Lemma J.1 (Isomorphic environments type the same terms). If Θ ` Γ ∼= Γ ′, then:

• If Θ; Γ ` v : P then ∃P ′ such that Θ ` P ∼=
− P ′ and Θ; Γ ′ ` v : P ′.

• If Θ; Γ ` t : N then ∃N ′ such that Θ ` N ∼=
− N ′ and Θ; Γ ′ ` t : N ′.

• If Θ; Γ ` s : N�M and Θ ` N ∼=
− N ′, then ∃M ′ such that Θ `M ∼=

− M ′ and Θ; Γ ` s : N ′ �M ′.

14

K Well-formedness of typing

Lemma K.1 (Well-formedness of restricted contexts). If Θ ctx, Θ ′ ctx, Θ =⇒ Θ ′, then Θ ′ � Θ ctx, Θ −→
Θ ′ � Θ, and Θ ′ � Θ =⇒ Θ ′.

Lemma K.2 (Type well-formed with type variable removed). If ΘL, α,ΘR ` T type± and α /∈ FUV(T), then
ΘL, ΘR ` T type±.

Lemma K.3 (Substitution preserves well-formedness of types). If ΘL, α,ΘR ` T type±, then ΘL, α̂, ΘR `
[α̂/α]T type±.

Lemma K.4 (Context extension maintains variables). If Θ −→ Ω, then FUV(Θ) = FUV(Ω) and FEV(Θ) =
FEV(Ω).

Lemma K.5 (Algorithmic typing is w.f.). Given a typing context Θ and typing environment Γ such that Θ ctx
and Θ ` Γ env:

• If Θ; Γ ` v : P a Θ ′, then Θ ′ ctx, Θ −→ Θ ′, Θ ′ ` P type+, and P ground.

• If Θ; Γ ` t : N a Θ ′, then Θ ′ ctx, Θ −→ Θ ′, Θ ′ ` N type−, and N ground.

• If Θ; Γ ` s : N�M a Θ ′, Θ ` N type−, and [Θ]N = N, then Θ ′ ctx, Θ =⇒ Θ ′, Θ ′ ` M type−,
[Θ ′]M =M, and FEV(M) ⊆ FEV(N) ∪ (FEV(Θ ′) \ FEV(Θ)).

L Determinism of typing

Lemma L.1 (Algorithmic typing is deterministic).

• If Θ; Γ ` e : A1 a Θ ′1 and Θ; Γ ` e : A2 a Θ ′2, then A1 = A2 and Θ ′1 = Θ ′2.

• If Θ; Γ ` t : N�M1 a Θ ′1 and Θ; Γ ` t : N�M2 a Θ ′2, then M1 =M2 and Θ ′1 = Θ ′2.

M Decidability of typing

Lemma M.1 (Decidability of algorithmic typing). There exists a total order @ on well-formed algorithmic
typing judgments such that for each derivation with typing judgment premises Ai and conclusion B, each Ai

compares less than B, i.e. ∀i. Ai @ B.

N Soundness of typing

N.1 Lemmas

Lemma N.1 (Extended complete context). If Θ ′ ctx, Ω ctx, Θ −→ Ω, Θ =⇒ Θ ′, and Θ ′ � Θ −→ Ω, then
∃Ω ′ such that Ω ′ ctx, Θ ′ −→ Ω ′, and Ω =⇒ Ω ′.

Lemma N.2 (Identical restricted contexts). If Θ ′ ctx and Θ −→ Θ ′, then Θ ′′ � Θ = Θ ′′ � Θ ′.

15

N.2 Statement

Theorem N.3 (Soundness of algorithmic typing). If Θ ctx, Θ ` Γ env, Θ ′ −→ Ω, and Ω ctx, then:

• If Θ; Γ ` v : P a Θ ′, then ‖Θ‖ ; Γ ` v : [Ω]P.

• If Θ; Γ ` t : N a Θ ′, then ‖Θ‖ ; Γ ` t : [Ω]N.

• If Θ; Γ ` s : N�M a Θ ′, Θ ` N type−, and [Θ]N = N, then ∃M ′ such that ‖Θ‖ ` [Ω]M ∼=
− M ′ and

‖Θ‖ ; Γ ` s : [Ω]N�M ′.

O Completeness of typing

O.1 Lemmas

Lemma O.1 (Weak context extension maintains variables). If Θ =⇒ Θ ′ then FEV(Θ) ⊆ FEV(Θ ′) and
FUV(Θ) = FUV(Θ ′).

Lemma O.2 (Reversing context extension from a complete context). If Ω −→ Θ then Θ −→ Ω.

Lemma O.3 (Pulling back restricted contexts). If Θ −→ Θ ′ and Θ ′ � Θ ′′ −→ Θ ′′′, then Θ� Θ ′′ −→ Θ ′′′.

O.2 Statement

Theorem O.4 (Completeness of algorithmic typing). If Θ ctx, Θ ` Γ env, Θ −→ Ω, and Ω ctx, then:

• If ‖Θ‖ ; Γ ` v : P then ∃Θ ′ such that Θ; Γ ` v : P a Θ ′ and Θ ′ −→ Ω.

• If ‖Θ‖ ; Γ ` t : N then ∃Θ ′ such that Θ; Γ ` t : N a Θ ′ and Θ ′ −→ Ω.

• If ‖Θ‖ ; Γ ` s : [Ω]N�M, Θ ` N type−, and [Θ]N = N, then ∃Θ ′,Ω ′ and M ′ such that Θ; Γ ` s :
N�M ′ a Θ ′, Ω =⇒ Ω ′, Θ ′ −→ Ω ′, ‖Θ‖ ` [Ω ′]M ′ ∼=

− M, [Θ ′]M ′ =M ′, and Ω ′ ctx.

Proofs

A’ Weakening

Lemma A.1 (Pushing uvars right preserves w.f.). Let Θ[ΘM] abbreviate ΘL, ΘM, ΘR. Then if Θ[α,ΘM] `
A type±, Θ[ΘM, α] ` A type±.

Proof. By rule induction on Θ[α,ΘM] ` A type±.

• Case β ∈ UV(Θ[α,ΘM])

Θ[α,ΘM] ` β type+
Twfuvar

β ∈UV(Θ[α,ΘM]) Subderivation
β ∈UV(Θ[ΘM, α]) Since UV ignores order

Z Θ[ΘM, α] ` β type+ By Twfuvar

16

• Case α̂ ∈ EV(Θ[α,ΘM])

Θ[α,ΘM] ` α̂ type+
Twfguess

α̂ ∈EV(Θ[α,ΘM]) Subderivation
α̂ ∈EV(Θ[ΘM, α]) Since EV ignores order

Z Θ[ΘM, α] ` α̂ type+ By Twfguess

• Case Θ[α,ΘM] ` N type−

Θ[α,ΘM] ` ↓N type+
Twfshift↓

Θ[α,ΘM] ` N type− Subderivation
Θ[ΘM, α] ` N type− By i.h.

Z Θ[ΘM, α] ` ↓N type+ By Twfshift↓
• Case ΘL, α,ΘM, ΘR, β ` N type−

ΘL, α,ΘM, ΘR ` ∀β.N type−
Twfforall

ΘL, α,ΘM, ΘR, β ` N type− Subderivation
ΘL, ΘM, α,ΘR, β ` N type− By i.h.

Z ΘL, ΘM, α,ΘR ` ∀β.N type− By Twfforall

• Case Θ[α,ΘM] ` P type+ Θ[α,ΘM] ` N type−

Θ[α,ΘM] ` P → N type−
Twfarrow

Θ[α,ΘM] ` P type+ Subderivation
Θ[ΘM, α] ` P type+ By i.h.
Θ[α,ΘM] ` N type− Subderivation
Θ[ΘM, α] ` N type− By i.h.

Z Θ[ΘM, α] ` P → N type− By Twfarrow

• Case Θ[α,ΘM] ` P type+

Θ[α,ΘM] ` ↑P type−
Twfshift↑

Θ[α,ΘM] ` P type+ Subderivation
Θ[ΘM, α] ` P type+ By i.h.

Z Θ[ΘM, α] ` ↑P type− By Twfshift↑

17

Lemma A.2 (Term well-formedness weakening). If Θ ` A type± then Θ,Θ ′ ` A type±.

Proof. By rule induction on Θ ` A type±.

• Case α ∈ UV(Θ)
Θ ` α type+

Twfuvar

α ∈UV(Θ) Subderivation
α ∈UV(Θ,Θ ′) Since UV(Θ) ⊆ UV(Θ,Θ ′)

Z Θ,Θ ′ ` α type+ By Twfuvar

• Case α̂ ∈ EV(Θ)
Θ ` α̂ type+

Twfguess

α̂ ∈EV(Θ) Subderivation
α̂ ∈EV(Θ,Θ ′) Since EV(Θ) ⊆ EV(Θ,Θ ′)

Z Θ,Θ ′ ` α̂ type+ By Twfguess

• Case Θ ` N type−

Θ ` ↓N type+
Twfshift↓

Θ ` N type− Subderivation
Θ,Θ ′ ` N type− By i.h.

Z Θ,Θ ′ ` ↓N type+ By Twfshift↓
• Case Θ,α ` N type−

Θ ` ∀α.N type−
Twfforall

Θ,α ` N type− Subderivation
Θ,α,Θ ′ ` N type− By i.h.
Θ,Θ ′, α ` N type− By Lemma A.1 (Pushing uvars right preserves w.f.)

Z Θ,Θ ′ ` ∀α.N type− By Twfforall

• Case Θ ` P type+ Θ ` N type−

Θ ` P → N type−
Twfarrow

Θ ` P type+ Subderivation
Θ,Θ ′ ` P type+ By i.h.
Θ ` N type− Subderivation

Θ,Θ ′ ` N type− By i.h.

18

Z Θ,Θ ′ ` P → N type− By Twfarrow

• Case Θ ` P type+

Θ ` ↑P type−
Twfshift↑

Θ ` P type+ Subderivation
Θ,Θ ′ ` P type+ By i.h.

Z Θ,Θ ′ ` ↑P type− By Twfshift↑

Lemma A.3 (Pushing uvars right in declarative judgment). Let Θ[ΘM] abbreviate ΘL, ΘM, ΘR. Then if
Θ[α,ΘM] ` A ≤± B, Θ[ΘM, α] ` A ≤± B.

Proof. By rule induction on Θ[α,ΘM] ` A ≤± B.

• Case Θ[α,ΘM] ` β type+

Θ[α,ΘM] ` β ≤+ β
≤±Drefl

Θ[α,ΘM] ` β type+ Subderivation
Θ[ΘM, α] ` β type+ By Lemma A.1 (Pushing uvars right preserves w.f.)

Z Θ[ΘM, α] ` β ≤+ β By ≤±Drefl

• Case Θ[α,ΘM] `M ≤− N Θ[α,ΘM] ` N ≤− M

Θ[α,ΘM] ` ↓N ≤+ ↓M ≤±Dshift↓
Θ[α,ΘM] `M ≤−N Subderivation
Θ[ΘM, α] `M ≤−N By i.h.
Θ[α,ΘM] ` N ≤−M Subderivation
Θ[ΘM, α] ` N ≤−M By i.h.

Z Θ[ΘM, α] ` ↓N ≤+ ↓M By ≤±Dshift↓
• Case ΘL, α,ΘM, ΘR, β ` N ≤− M

ΘL, α,ΘM, ΘR ` N ≤− ∀β.M
≤±Dforallr

ΘL, α,ΘM, ΘR, β ` N ≤−M Subderivation
ΘL, ΘM, α,ΘR, β ` N ≤−M By i.h.

Z ΘL, ΘM, α,ΘR ` N ≤− ∀β.M By ≤±Dforallr

19

• Case Θ[α,ΘM] ` P type+ Θ[α,ΘM] ` [P/β]N ≤− M

Θ[α,ΘM] ` ∀β.N ≤− M
≤±Dforalll

Θ[α,ΘM] ` P type+ Subderivation
Θ[ΘM, α] ` P type+ By Lemma A.1 (Pushing uvars right preserves w.f.)

Θ[α,ΘM] ` [P/β]N ≤−M Subderivation
Θ[ΘM, α] ` [P/β]N ≤−M By i.h.

Z Θ[ΘM, α] ` ∀β.N ≤−M By ≤±Dforalll

• Case Θ ` Q ≤+ P Θ ` N ≤− M

Θ ` P → N ≤− Q→M
≤±Darrow

Θ[α,ΘM] ` Q ≤+ P Subderivation
Θ[ΘM, α] ` Q ≤+ P By i.h.
Θ[α,ΘM] ` N ≤−M Subderivation
Θ[ΘM, α] ` N ≤−M By i.h.

Z Θ[ΘM, α] ` P → N ≤−Q→M By ≤±Darrow

• Case Θ ` Q ≤+ P Θ ` P ≤+ Q

Θ ` ↑P ≤− ↑Q ≤±Dshift↑
Θ[α,ΘM] ` Q ≤+ P Subderivation
Θ[ΘM, α] ` Q ≤+ P By i.h.
Θ[α,ΘM] ` P ≤+Q Subderivation
Θ[ΘM, α] ` P ≤+Q By i.h.

Z Θ[ΘM, α] ` ↑P ≤− ↑Q By ≤±Dshift↑

Lemma A.4 (Declarative subtyping weakening). If Θ ` A ≤± B then Θ,Θ ′ ` A ≤± B.

Proof. By rule induction on Θ ` A ≤± B.

• Case Θ ` α type+

Θ ` α ≤+ α
≤±Drefl

Θ ` α type+ Subderivation
Θ,Θ ′ ` α type+ By Lemma A.2 (Term well-formedness weakening)

Z Θ,Θ ′ ` α ≤+ α By ≤±Drefl

20

• Case Θ `M ≤− N Θ ` N ≤− M

Θ ` ↓N ≤+ ↓M ≤±Dshift↓
Θ `M ≤−N Subderivation

Θ,Θ ′ `M ≤−N By i.h.
Θ ` N ≤−M Subderivation

Θ,Θ ′ ` N ≤−M By i.h.
Z Θ,Θ ′ ` ↓N ≤+ ↓M By ≤±Dshift↓

• Case Θ,α ` N ≤− M

Θ ` N ≤− ∀α.M
≤±Dforallr

Θ,α ` N ≤−M Subderivation
Θ,α,Θ ′ ` N ≤−M By i.h.
Θ,Θ ′, α ` N ≤−M By Lemma A.3 (Pushing uvars right in declarative judgment)

Z Θ,Θ ′ ` N ≤− ∀α.M By i.h.

• Case Θ ` P type+ Θ ` [P/α]N ≤− M

Θ ` ∀α.N ≤− M
≤±Dforalll

Θ ` P type+ Subderivation
Θ,Θ ′ ` P type+ By Lemma A.2 (Term well-formedness weakening)

Θ ` [P/α]N ≤−M Subderivation
Θ,Θ ′ ` [P/α]N ≤−M By i.h.

Z Θ,Θ ′ ` ∀α.N ≤−M By ≤±Dforalll

• Case Θ ` Q ≤+ P Θ ` N ≤− M

Θ ` P → N ≤− Q→M
≤±Darrow

Θ ` Q ≤+ P Subderivation
Θ,Θ ′ ` Q ≤+ P By i.h.

Θ ` N ≤−M Subderivation
Θ,Θ ′ ` N ≤−M By i.h.

Z Θ,Θ ′ ` P → N ≤−Q→M By ≤±Darrow

• Case Θ ` Q ≤+ P Θ ` P ≤+ Q

Θ ` ↑P ≤− ↑Q ≤±Dshift↑

21

Θ ` Q ≤+ P Subderivation
Θ,Θ ′ ` Q ≤+ P By i.h.

Θ ` P ≤+Q Subderivation
Θ,Θ ′ ` P ≤+Q By i.h.

Z Θ,Θ ′ ` ↑P ≤− ↑Q By ≤±Dshift↑

B’ Declarative subtyping

Lemma B.1 (Declarative subtyping is reflexive). If Θ ` A type± then Θ ` A ≤± A.

Proof. By rule induction on Θ ` A type±.

• Case α ∈ UV(Θ)
Θ ` α type+

Twfuvar

Θ ` α type+ Assumption
Z Θ ` α ≤+ α By ≤±Drefl

• Case Θ ` N type−

Θ ` ↓N type+
Twfshift↓

Θ ` N type− Subderivation
Θ ` N ≤−N By i.h.

Z Θ ` ↓N ≤+ ↓N By ≤±Dshift↓
• Case Θ,α ` N type−

Θ ` ∀α.N type−
Twfforall

Θ,α ` N type− Subderivation
Θ,α ` N ≤−N By i.h.

α ∈UV(Θ,α) By definition of UV
Θ,α ` α type+ By Twfuvar

Θ,α ` ∀α.N ≤−N By ≤±Dforalll

Z Θ ` ∀α.N ≤− ∀α.N By ≤±Dforallr

• Case Θ ` P type+ Θ ` N type−

Θ ` P → N type−
Twfarrow

22

Θ ` P type+ Subderivation
Θ ` P ≤+ P By i.h.
Θ ` N type− Subderivation

Θ ` N ≤−N By i.h.
Z Θ ` P → N ≤− P → N By ≤±Darrow

• Case Θ ` P type+

Θ ` ↑P type−
Twfshift↑

Θ ` P type+ Subderivation
Θ ` P ≤+ P By i.h.

Z Θ ` ↑P ≤− ↑P By ≤±Dshift↑

Lemma B.2 (Declarative substitution w.f.). If ΘL, ΘR ` P type+ and ΘL, α,ΘR ` A type±, then ΘL, ΘR `
[P/α]A type±.

Proof. By rule induction on ΘL, α,ΘR ` A type±.

• Case β ∈ UV(ΘL, α,ΘR)

ΘL, α,ΘR ` β type+
Twfuvar

Case β = α:

[P/α]β = P By definition of [−]−

Z ΘL, ΘR ` P type+ Assumption

Case β 6= α:

[P/α]β = β By definition of [−]−

β ∈UV(ΘL, α,ΘR) Subderivation
β ∈UV(ΘL, ΘR) Since β 6= α

Z ΘL, ΘR ` β type+ By Twfuvar

• Case ΘL, α,ΘR ` N type−

ΘL, α,ΘR ` ↓N type+
Twfshift↓

ΘL, ΘR ` P type+ Assumption
ΘL, α,ΘR ` N type− Subderivation

ΘL, ΘR ` [P/α]N type− By i.h.
ΘL, ΘR ` ↓[P/α]N type+ By Twfshift↓

Z ΘL, ΘR ` [P/α]↓N type+ By definition of [−]−

23

• Case ΘL, α,ΘR, β ` N type−

ΘL, α,ΘR ` ∀β.N type−
Twfforall

ΘL, ΘR ` P type+ Assumption
ΘL, α,ΘR, β ` N type− Subderivation
ΘL, ΘR, β ` P type+ By Lemma A.2 (Term well-formedness weakening)

ΘL, ΘR, β ` [P/α]N type− By i.h.
ΘL, ΘR ` ∀β. [P/α]N type− By Twfforall

Z ΘL, ΘR ` [P/α]∀β.N type− By definition of [−]−

• Case ΘL, α,ΘR ` Q type+ ΘL, α,ΘR ` N type−

ΘL, α,ΘR ` Q→ N type−
Twfarrow

ΘL, ΘR ` P type+ Assumption
ΘL, α,ΘR ` Q type+ Subderivation

ΘL, ΘR ` [P/α]Q type+ By i.h.
ΘL, α,ΘR ` N type− Subderivation

ΘL, ΘR ` [P/α]N type− By i.h.
ΘL, ΘR ` [P/α]Q→ [P/α]N type− By Twfarrow

Z ΘL, ΘR ` [P/α](Q→ N) type− By definition of [−]−

• Case ΘL, α,ΘR ` Q type+

ΘL, α,ΘR ` ↑Q type−
Twfshift↑

ΘL, ΘR ` P type+ Assumption
ΘL, α,ΘR ` Q type+ Subderivation

ΘL, ΘR ` [P/α]Q type+ By i.h.
ΘL, ΘR ` ↑[P/α]Q type− By Twfshift↑

Z ΘL, ΘR ` [P/α]↑Q type− By definition of [−]−

Lemma B.3 (Declarative subtyping is stable under substitution). If ΘL, ΘR ` P type+, then:

• If ΘL, α,ΘR ` Q type+, ΘL, α,ΘR ` R type+, and ΘL, α,ΘR ` Q ≤+ R, then ΘL, ΘR ` [P/α]Q ≤+

[P/α]R.

• If ΘL, α,ΘR ` N type−, ΘL, α,ΘR ` M type−, and ΘL, α,ΘR ` N ≤− M, then ΘL, ΘR ` [P/α]N ≤−

[P/α]M.

Proof. By mutual rule induction on ΘL, α,ΘR ` Q ≤+ R and ΘL, α,ΘR ` N ≤− M.

• Case ΘL, α,ΘR ` β type+

ΘL, α,ΘR ` β ≤+ β
≤±Drefl

24

Case β 6= α:

[P/α]β = β By definition of [−]−

ΘL, α,ΘR ` β type+ Subderivation
β ∈UV(ΘL, α,ΘR) Inversion (Twfuvar)
β ∈UV(ΘL, ΘR) Since β 6= α

ΘL, ΘR ` β type+ By Twfuvar

Z ΘL, ΘR ` β ≤+ β By ≤±Drefl

Case β = α:

[P/α]β = P By definition of [−]−

ΘL, ΘR ` P type+ Assumption
Z ΘL, ΘR ` P ≤+ P By Lemma B.1 (Declarative subtyping is reflexive)

• Case ΘL, α,ΘR `M ≤− N ΘL, α,ΘR ` N ≤− M

ΘL, α,ΘR ` ↓N ≤+ ↓M ≤±Dshift↓
ΘL, ΘR ` P type+ Assumption

ΘL, α,ΘR ` ↓N type+ ′′

ΘL, α,ΘR ` N type− Inversion (Twfshift↓)
ΘL, α,ΘR ` ↓M type+ Assumption
ΘL, α,ΘR `M type− Inversion (Twfshift↓)

ΘL, α,ΘR `M ≤−N Subderivation
ΘL, ΘR ` [P/α]M ≤− [P/α]N By i.h.
ΘL, α,ΘR `M ≤−N Subderivation

ΘL, ΘR ` [P/α]N ≤− [P/α]M ′′

Z ΘL, ΘR ` ↓[P/α]N ≤+ ↓[P/α]M By ≤±Dshift↓
Z ΘL, ΘR ` [P/α]↓N ≤+ [P/α]↓M By definition of [−]−

• Case ΘL, α,ΘR, β ` N ≤− M

ΘL, α,ΘR ` N ≤− ∀β.M
≤±Dforallr

ΘL, ΘR ` P type+ Assumption
ΘL, α,ΘR ` N type− ′′

ΘL, α,ΘR ` ∀β.M type− ′′

ΘL, ΘR, β ` P type+ By Lemma A.2 (Term well-formedness weakening)
ΘL, α,ΘR, β ` N type− By Lemma A.2 (Term well-formedness weakening)
ΘL, α,ΘR, β `M type− Inversion (Twfforall)

ΘL, α,ΘR, β ` N ≤−M Subderivation
ΘL, ΘR, β ` [P/α]N ≤− [P/α]M By i.h.

Z ΘL, ΘR ` [P/α]N ≤− ∀β. [P/α]M By ≤±Dforallr

Z ΘL, ΘR ` [P/α]N ≤− [P/α]∀β.M By definition of [−]−

25

• Case ΘL, α,ΘR ` Q type+ ΘL, α,ΘR ` [Q/β]N ≤− M

ΘL, α,ΘR ` ∀β.N ≤− M
≤±Dforalll

ΘL, ΘR ` P type+ Assumption
ΘL, α,ΘR ` ∀β.N type− ′′

ΘL, α,ΘR, β ` N type− Inversion (Twfforall)
ΘL, α,ΘR ` Q type+ Subderivation

ΘL, α,ΘR ` [Q/β]N type− By Lemma B.2 (Declarative substitution w.f.)
ΘL, α,ΘR `M type− Assumption

ΘL, α,ΘR ` [Q/β]N ≤−M Subderivation
ΘL, ΘR ` [P/α][Q/β]N ≤− [P/α]M By i.h.

ΘL, ΘR ` [([P/α]Q)/β][P/α]N ≤− [P/α]M Reordering substitutions
ΘL, ΘR ` [P/α]Q type+ By Lemma B.2 (Declarative substitution w.f.)

Z ΘL, ΘR ` ∀β. [P/α]N ≤− [P/α]M By ≤±Dforalll (using [P/α]Q as the ground term)
Z ΘL, ΘR ` [P/α]∀β.N ≤− [P/α]M By definition of [−]−

• Case ΘL, α,ΘR ` R ≤+ Q ΘL, α,ΘR ` N ≤− M

ΘL, α,ΘR ` Q→ N ≤− R→M
≤±Darrow

ΘL, ΘR ` P type− Assumption
ΘL, α,ΘR ` Q→ N type− ′′

ΘL, α,ΘR ` R→M type− ′′

ΘL, α,ΘR ` R type+ Inversion (Twfarrow)
ΘL, α,ΘR ` Q type+ ′′

ΘL, α,ΘR ` R ≤+Q Subderivation
ΘL, ΘR ` [P/α]R ≤+ [P/α]Q By i.h.

ΘL, α,ΘR ` N type− Inversion (Twfarrow)
ΘL, α,ΘR `M type− ′′

ΘL, α,ΘR ` N ≤−M Subderivation
ΘL, ΘR ` [P/α]N ≤− [P/α]M By i.h.

Z ΘL, ΘR ` [P/α]Q→ [P/α]N ≤− [P/α]R→ [P/α]M By ≤±Darrow

Z ΘL, ΘR ` [P/α](Q→ N) ≤− [P/α](R→M) By definition of [−]−

• Case ΘL, α,ΘR ` R ≤+ Q ΘL, α,ΘR ` Q ≤+ R

ΘL, α,ΘR ` ↑Q ≤− ↑R ≤±Dshift↑
ΘL, ΘR ` P type+ Assumption

ΘL, α,ΘR ` ↑Q type− ′′

ΘL, α,ΘR ` Q type+ Inversion (Twfshift↑)
ΘL, α,ΘR ` ↑R type− Assumption
ΘL, α,ΘR ` R type+ Inversion (Twfshift↑)

26

ΘL, ΘR ` [P/α]R ≤+ [P/α]Q By i.h.
ΘL, ΘR ` [P/α]Q ≤+ [P/α]R ′′

Z ΘL, ΘR ` ↑[P/α]Q ≤− ↑[P/α]R By ≤±Dshift↑
Z ΘL, ΘR ` [P/α]↑Q ≤− [P/α]↑R By definition of [−]−

Lemma B.4 (Symmetry of positive declarative subtyping). If Θ ` P ≤+ Q then Θ ` Q ≤+ P by a derivation
of equal height.

Proof. By rule induction on Θ ` P ≤+ Q.

• Case Θ ` α type+

Θ ` α ≤+ α
≤±Drefl

Z Θ ` α ≤+ α Assumption

• Case Θ `M ≤− N Θ ` N ≤− M

Θ ` ↓N ≤+ ↓M ≤±Dshift↓
Θ ` N ≤−M Subderivation
Θ `M ≤−N ′′

Z Θ ` ↓M ≤+ ↓N By ≤±Dshift↓

B’.1 Isomorphic types

Lemma B.5 (Mutual subtyping substitution). Given Θ, #–α ` #–

P type+ and Θ,
#–

β ` #–

Q type+:

• If:

1. Θ, #–α ` R type+

2. Θ,
#–

β ` S type+

3. Θ, #–α ` R ≤+ [
–

P/β]S

4. Θ,
#–

β ` S ≤+ [
–

Q/α]R

then:

1. ∀βi ∈
#–

β.βi ∈ FUV(S) =⇒
∃γ. Pi = γ

2. ∀αi ∈ #–α.αi ∈ FUV(R) =⇒
∃γ.Qi = γ

• If:

1. Θ, #–α `M type−

2. Θ,
#–

β ` N type−

3. Θ, #–α ` [
–

P/β]N ≤− M

4. Θ,
#–

β ` [
–

Q/α]M ≤− N

then:

1. ∀βi ∈
#–

β.βi ∈ FUV(N) =⇒
∃γ. Pi = γ

2. ∀αi ∈ #–α.αi ∈ FUV(M) =⇒
∃γ.Qi = γ

Proof. By strong mutual rule induction on the pair of Θ, #–α ` R ≤+ [
–

P/β]S and Θ,
#–

β ` S ≤+ [
–

Q/α]R, and the
pair of Θ, #–α ` [

–

P/β]N ≤− M and Θ,
#–

β ` [
–

Q/α]M ≤− N.

27

• Case
Θ, #–α ` γ type+

Θ, #–α ` γ ≤+ γ
≤±Drefl

Θ,
#–

β ` γ type+

Θ,
#–

β ` γ ≤+ γ
≤±Drefl

By the ≤±Drefl rule, we must have the same universal variable on both sides of both judgments.

[
–

P/β]S = γ Since we have an instance of ≤±Drefl

Z Pi = γ For all Pi such that βi ∈
#–

β and βi ∈ FUV(S)

[
–

Q/α]R = γ Since we have an instance of ≤±Drefl

Z Qi = γ For all Qi such that αi ∈ #–α and αi ∈ FUV(R)

• Case
Θ, #–α ` [

–

P/β]N ≤− M Θ, #–α `M ≤− [
–

P/β]N

Θ, #–α ` ↓M ≤+ [
–

P/β]↓N ≤±Dshift↓
If we have an instance of ≤±Dshift↓, then the types on both sides of the other judgment must also start
with ↓, so we must have another instance of ≤±Dshift↓:

Θ,
#–

β ` [
–

Q/α]M ≤− N Θ,
#–

β ` N ≤− [
–

Q/α]M

Θ,
#–

β ` ↓N ≤+ [
–

Q/α]↓M ≤±Dshift↓

Θ, #–α `M type− Inversion (Twfshift↓)
Θ,

#–

β ` N type− Inversion (Twfshift↓)
Θ, #–α ` [

–

P/β]N ≤−M Subderivation
Θ,

#–

β ` [
–

Q/α]M ≤−N ′′

Pi = γ For all Pi such that βi ∈
#–

β and βi ∈ FUV(N) (by i.h.)
Qi = γ For all Qi such that αi ∈ #–α and αi ∈ FUV(M) (by i.h.)

Z Pi = γ For all Pi such that βi ∈
#–

β and βi ∈ FUV(↓N) (by definition of FUV)
Z Qi = γ For all Qi such that αi ∈ #–α and αi ∈ FUV(↓M) (by definition of FUV)

• Case
Θ, #–α, γ ` [

–

P/β]N ≤− M

Θ, #–α ` [
–

P/β]N ≤− ∀γ.M
≤±Dforallr

By induction on the number of consecutive instances of ≤±Dforallr in the derivation of the second
judgment.

– Case
Θ,

#–

β ` R type+ Θ,
#–

β ` [
–

Q/α, R/γ]M ≤− N

Θ,
#–

β ` ∀γ. [
–

Q/α]M ≤− N
≤±Dforalll

This is the base case of the inner induction. Our use of the outer induction hypothesis in this case
is why we needed to perform a strong rule induction.

Θ, #–α, γ `M type− Inversion (Twfforall)
Θ,

#–

β ` N type− Assumption

28

Θ, #–α, γ ` [
–

P/β]N ≤−M Subderivation
Θ,

#–

β ` [
–

Q/α, R/γ]M ≤−N ′′

Z Pi = δ For all Pi such that βi ∈
#–

β and βi ∈ FUV(N) (by outer i.h.)
Qi = δ For all Qi such that αi ∈ #–α, γ and αi ∈ FUV(M) (by outer i.h.)

Z Qi = δ For all Qi such that αi ∈ #–α and αi ∈ FUV(∀γ.M)

(by definition of FUV)

– Case
Θ,

#–

β, δ ` [
–

Q/α]∀γ.M ≤− N ′

Θ,
#–

β ` [
–

Q/α]∀γ.M ≤− ∀δ.N ′
≤±Dforallr

This is the inductive step of the inner induction. Here we have n = k+ 1 consecutive instances of
≤±Dforallr in the derivation of the second judgment.

Θ,
#–

β, δ ` N ′ type− Inversion (Twfforall)
Θ,

#–

β, δ ` [
–

Q/α]∀γ.M ≤−N ′ Subderivation

Θ, δ,
#–

β ` N ′ type− By Lemma A.1 (Pushing uvars right preserves w.f.)
Θ, δ,

#–

β ` [
–

Q/α]∀γ.M ≤−N ′ By Lemma A.3 (Pushing uvars right in declarative judgment)
Pi = η For all Pi such that βi ∈

#–

β and βi ∈ FUV(N ′) (by inner i.h.)
Qi = η For all Qi such that αi ∈ #–α, γ and αi ∈ FUV(M) (by inner i.h.)

Z Pi = η For all Pi such that βi ∈
#–

β and βi ∈ FUV(∀δ.N ′)
(by definition of FUV)

Z Qi = η For all Qi such that αi ∈ #–α and αi ∈ FUV(∀γ.M)

(by definition of FUV)

• Case
Θ, #–α ` R type+ Θ, #–α ` [

–

P/β, R/γ]N ≤− M

Θ, #–α ` ∀γ. [
–

P/β]N ≤− M
≤±Dforalll

We perform a case split over the derivation of the second judgment.

– Case
Θ,

#–

β ` S type+ Θ,
#–

β ` [
–

Q/α, S/δ]M ′ ≤− ∀γ.N
Θ,

#–

β ` ∀δ. [
–

Q/α]M ′ ≤− ∀γ.N
≤±Dforalll

Θ, #–α, δ `M ′ type− Inversion (Twfforall)
Θ,

#–

β, γ ` N type− ′′

Θ, #–α ` [
–

P/β, R/γ]N ≤− ∀δ.M ′ Subderivation
Θ,

#–

β ` [
–

Q/α, S/δ]M ′ ≤− ∀γ.N ′′

Θ, #–α, δ ` [
–

P/β, R/γ]N ≤−M ′ Inversion (≤±Dforallr)
Θ,

#–

β, γ ` [
–

Q/α, S/δ]M ′ ≤−N ′′

Pi = η For all Pi such that βi ∈
#–

β, γ and βi ∈ FUV(N) (by i.h.)
Qi = η For all Qi such that αi ∈ #–α, δ and αi ∈ FUV(M ′) (by i.h.)

Z Pi = η For all Pi such that βi ∈
#–

β and βi ∈ FUV(∀γ.N)

(by definition of FUV)

29

Z Qi = η For all Qi such that αi ∈ #–α and αi ∈ FUV(∀δ.M ′)
(by definition of FUV)

Here the application of the inductive hypothesis states that every universal variable in the ar-
rays

#–

β, γ and #–α, δ that appears in the corresponding type is substituted by a universal variable
(including γ and δ). As a result, the conclusion holds for just the universal variables in

#–

β and #–α .

– Case
Θ,

#–

β, γ ` [
–

Q/α]M ≤− N

Θ,
#–

β ` [
–

Q/α]M ≤− ∀γ.N
≤±Dforallr

Θ, #–α `M type− Assumption
Θ,

#–

β, γ ` N type− Inversion (Twfforall)
Θ, #–α ` [

–

P/β, R/γ]N ≤−M Subderivation
Θ,

#–

β, γ ` [
–

Q/α]M ≤−N ′′

Pi = δ For all Pi such that βi ∈
#–

β, γ and βi ∈ FUV(N) (by outer i.h.)
Z Pi = δ For all Pi such that βi ∈

#–

β and βi ∈ FUV(∀γ.N)

(by definition of FUV)
Z Qi = δ For all Qi such that αi ∈ #–α and αi ∈ FUV(M) (by outer i.h.)

• Case
Θ, #–α ` R ≤+ [

–

P/β]S Θ, #–α ` [
–

P/β]N ≤− M

Θ, #–α ` [
–

P/β](S→ N) ≤− R→M
≤±Darrow

If we have an instance of ≤±Darrow, then the types on both sides of the other judgment must be
function types, so we must have another instance of ≤±Darrow:

Θ,
#–

β ` S ≤+ [
–

Q/α]R Θ,
#–

β ` [
–

Q/α]M ≤− N

Θ,
#–

β ` [
–

Q/α](R→M) ≤− S→ N
≤±Darrow

Θ, #–α ` R type+ Inversion (Twfarrow)
Θ,

#–

β ` S type+ Inversion (Twfarrow)
Θ, #–α ` R ≤+ [

–

P/β]S Subderivation
Θ,

#–

β ` S ≤+ [
–

Q/α]R ′′

Pi = γ For all Pi such that βi ∈
#–

β and βi ∈ FUV(S) (by i.h.)
Qi = γ For all Qi such that αi ∈ #–α and αi ∈ FUV(R) (by i.h.)

Θ, #–α `M type− Inversion (Twfarrow)
Θ,

#–

β ` N type− Inversion (Twfarrow)
Θ, #–α ` [

–

P/β]N ≤−M Subderivation
Θ,

#–

β ` [
–

Q/α]M ≤−N ′′

Pi = γ For all Pi such that βi ∈
#–

β and βi ∈ FUV(N) (by i.h.)
Qi = γ For all Qi such that αi ∈ #–α and αi ∈ FUV(M) (by i.h.)

Z Pi = γ For all Pi such that βi ∈
#–

β and βi ∈ FUV(S→ N)

30

(by definition of FUV)
Z Qi = γ For all Qi such that αi ∈ #–α and αi ∈ FUV(R→M)

(by definition of FUV)

• Case
Θ, #–α ` [

–

P/β]S ≤+ R Θ, #–α ` R ≤+ [
–

P/β]S

Θ, #–α ` ↑R ≤− [
–

P/β]↑S ≤±Dshift↑
If we have an instance of ≤±Dshift↑, then the types on both sides of the other judgment must also start
with ↑, so we must have another instance of ≤±Dshift↑:

Θ,
#–

β ` [
–

Q/α]R ≤+ S Θ,
#–

β ` S ≤+ [
–

Q/α]R

Θ,
#–

β ` ↑S ≤− [
–

Q/α]↑R ≤±Dshift↑

Θ, #–α ` R type+ Inversion (Twfshift↑)
Θ,

#–

β ` S type+ Inversion (Twfshift↑)
Θ, #–α ` R ≤+ [

–

P/β]S Subderivation
Θ,

#–

β ` S ≤+ [
–

Q/α]R ′′

Pi = γ For all Pi such that βi ∈
#–

β and βi ∈ FUV(S) (by i.h.)
Qi = γ For all Qi such that αi ∈ #–α and αi ∈ FUV(R) (by i.h.)

Z Pi = γ For all Pi such that βi ∈
#–

β and βi ∈ FUV(↑S)
(by definition of FUV)

Z Qi = γ For all Qi such that αi ∈ #–α and αi ∈ FUV(↑R)
(by definition of FUV)

Lemma B.6 (Isomorphic types are the same size). If:

1. Θ ` A type+

2. Θ ` B type+

3. Θ ` A ∼=
± B

then |A|NQ = |B|NQ.

Proof. By rule induction on Θ ` A ≤± B and Θ ` B ≤± A.

• Case Θ ` γ type+

Θ ` γ ≤+ γ
≤±Drefl

Θ ` γ type+

Θ ` γ ≤+ γ
≤±Drefl

Z |γ|NQ = |γ|NQ Identical LHS and RHS

31

• Case Θ ` N ≤− M Θ `M ≤− N

Θ ` ↓M ≤+ ↓N ≤±Dshift↓ Θ `M ≤− N Θ ` N ≤− M

Θ ` ↓N ≤+ ↓M ≤±Dshift↓
Θ ` ↓M type+ Assumption
Θ `M type− Inversion (Twfshift↓)
Θ ` ↓N type+ Assumption
Θ ` N type− Inversion (Twfshift↓)

Θ `M ≤−N Subderivation
Θ ` N ≤−M Subderivation
|M|NQ = |N|NQ By i.h.

Z |↓M|NQ = |↓N|NQ By definition of |−|NQ

• Case Θ ` P type+ Θ ` [P/α]M ≤− N

Θ ` ∀α.M ≤− N
≤±Dforalll

Θ,α ` N ≤− M

Θ ` N ≤− ∀α.M
≤±Dforallr

Θ ` P type+ Subderivation
Θ ` N type− Assumption

Θ,α ` N type− By Lemma A.2 (Term well-formedness weakening)
Θ ` ∀α.M type− Assumption
Θ,α `M type− Inversion (Twfforall)

Θ ` [P/α]M ≤−N Subderivation
Θ,α ` N ≤−M Subderivation

P ∈Uvar By Lemma B.5 (Mutual subtyping substitution)

|[P/α]M|NQ = |M|NQ Since |P|NQ = 1 = |α|NQ

Θ ` [P/α]M type− By Lemma B.2 (Declarative substitution w.f.)
Θ ` N ≤− [P/α]M By Lemma B.3 (Declarative subtyping is stable under substitution)

|[P/α]M|NQ = |N|NQ By i.h. (since P ∈ Uvar, the derivation of Θ ` N ≤− [P/α]M is
the same size as the derivation of Θ,α ` N ≤− M)

|M|NQ = |N|NQ Using |[P/α]M|NQ = |M|NQ

Z |∀α.M|NQ = |N|NQ By definition of type size

• Case Θ,α `M ≤− N

Θ `M ≤− ∀α.N
≤±Dforallr

Θ ` P type+Θ ` [P/α]N ≤− M

Θ ` ∀α.N ≤− M
≤±Dforalll

Symmetrical to the previous case (M and N are swapped).

• Case Θ ` Q ≤+ P Θ `M ≤− N

Θ ` P →M ≤− Q→ N
≤±Darrow

Θ ` P ≤+ Q Θ ` N ≤− M

Θ ` Q→ N ≤− P →M
≤±Darrow

Θ ` P → N type− Assumption
Θ ` P type+ Inversion (Twfarrow)
Θ ` N type− ′′

Θ ` Q→M type− Assumption

32

Θ ` Q type+ Inversion (Twfarrow)
Θ `M type− ′′

Θ ` P ≤+Q Subderivation
Θ ` Q ≤+ P ′′

|P|NQ = |Q|NQ By i.h.
Θ `M ≤−N Subderivation
Θ ` N ≤−M ′′

|M|NQ = |N|NQ By i.h.
Z |P →M|NQ = |Q→ N|NQ By definition of type size

• Case Θ ` Q ≤+ P Θ ` P ≤+ Q

Θ ` ↑P ≤− ↑Q ≤±Dshift↑ Θ ` Q ≤+ P Θ ` Q ≤+ P

Θ ` ↑Q ≤− ↑P ≤±Dshift↑
Θ ` ↑P type− Assumption
Θ ` P type+ Inversion (Twfshift↑)
Θ ` ↑Q type− Assumption
Θ ` Q type+ Inversion (Twfshift↑)

Θ ` P ≤+Q Subderivation
Θ ` Q ≤+ P ′′

|P|NQ = |Q|NQ By i.h.
|↑P|NQ = |↑Q|NQ By definition of |−|NQ

B’.2 Transitivity

Lemma B.7 (Declarative subtyping is transitive). If Θ ` A type±, Θ ` B type±, Θ ` C type±, Θ ` A ≤± B,
and Θ ` B ≤± C, then Θ ` A ≤± C.

Proof. By rule induction on Θ ` B ≤± C weighted by the lexicographic ordering of (|B|NQ, NPQ(B)+NPQ(C))
in the positive case and (|C|NQ, NPQ(B) + NPQ(C)) in the negative case.

• Case Θ ` α type+

Θ ` α ≤+ α
≤±Drefl

Θ ` α type+

Θ ` α ≤+ α
≤±Drefl

Θ ` α type+ Subderivation
Z Θ ` α ≤+ α By ≤±Drefl

• Case Θ `M ≤− N Θ ` N ≤− M

Θ ` ↓N ≤+ ↓M ≤±Dshift↓ Θ ` N ′ ≤− M Θ `M ≤− N ′

Θ ` ↓M ≤+ ↓N ′ ≤±Dshift↓
The second judgment must be an instance of ≤±Dshift↓ due to the structure of ↓M.

33

Θ ` ↓N type+ Assumption
Θ ` ↓M type+ ′′

Θ ` ↓N ′ type+ ′′

Θ ` N type− Inversion (Twfshift↓)
Θ `M type− ′′

Θ ` N ′ type− ′′

Θ `M ≤−N Subderivation
Θ ` N ≤−M ′′

|M|NQ = |N|NQ By Lemma B.6 (Isomorphic types are the same size)
Θ `M ≤−N ′ Subderivation
Θ ` N ′ ≤−M ′′

|M|NQ = |N ′|NQ By Lemma B.6 (Isomorphic types are the same size)

Θ ` N ′ ≤−M Above
Θ `M ≤−N ′′

Θ ` N ′ ≤−N By i.h. (|N|NQ = |M|NQ < |↓M|NQ)
Θ ` N ≤−M Above
Θ `M ≤−N ′ ′′

Θ ` N ≤−N ′ By i.h. (|N ′|NQ = |M|NQ < |↓M|NQ)
Z Θ ` ↓N ≤+ ↓N ′ By ≤±Dshift↓

• Case Θ,α `M ≤− N ′

Θ `M ≤− ∀α.N ′
≤±Dforallr

Here we only need to decompose the second declarative judgment.

Θ ` N type− Assumption
Θ,α ` N type− By Lemma A.2 (Term well-formedness weakening)
Θ `M type− Assumption

Θ,α `M type− By Lemma A.2 (Term well-formedness weakening)
Θ,α ` ∀α.N ′ type− Assumption

Θ,α ` N ′ type− Inversion (Twfforall)

Θ ` N ≤−M Assumption
Θ,α ` N ≤−M By Lemma A.4 (Declarative subtyping weakening)
Θ,α `M ≤−N ′ Subderivation
Θ,α ` N ≤−N ′ By i.h. (|N ′|NQ = |∀α.N ′|NQ and the number of prenex quantifiers in

the second judgment has reduced by 1)
Z Θ ` N ≤− ∀α.N ′ By ≤±Dforallr (α /∈ FUV(N) since α /∈ UV(Θ) (because α fresh)

and also Θ ` N type−)

• Case Θ,α ` N ≤− M

Θ ` N ≤− ∀α.M
≤±Dforallr

Θ ` P type+ Θ ` [P/α]M ≤− N ′

Θ ` ∀α.M ≤− N ′
≤±Dforalll

34

Θ ` N type− Assumption
Θ ` ∀α.M type− Assumption
Θ,α `M type− Inversion (Twfforall)
Θ ` N ′ type− Assumption

Θ,α ` N ≤−M Subderivation
Θ ` P type+ Subderivation

Θ ` N ≤− [P/α]M By Lemma B.3 (Declarative subtyping is stable under substitution)
(α /∈ FUV(N) by side condition of ≤±Dforallr)

Θ ` [P/α]M ≤−N ′ Subderivation
Z Θ ` N ≤−N ′ By i.h. (|N ′|NQ = |N ′|NQ and the number of prenex quantifiers in

the second judgment has reduced by 1. Substitution
can only replace positive types, so it cannot change the
number of prenex quantifiers in a negative type)

• Case Θ ` Q ≤+ P Θ ` N ≤− M

Θ ` P → N ≤− Q→M
≤±Darrow

Θ ` P ′ ≤+ Q Θ `M ≤− N ′

Θ ` Q→M ≤− P ′ → N ′
≤±Darrow

Θ ` P → N type− Assumption
Θ ` P type+ Inversion (Twfarrow)
Θ ` N type− ′′

Θ ` Q→M type− Assumption
Θ ` Q type+ Inversion (Twfarrow)
Θ `M type− ′′

Θ ` P ′ → N ′ type− Assumption
Θ ` P ′ type+ Inversion (Twfarrow)
Θ ` N ′ type− ′′

Θ ` P ′ ≤+Q Subderivation
Θ ` Q ≤+ P ′ By Lemma B.4 (Symmetry of positive declarative subtyping)
|P ′|NQ = |Q|NQ By Lemma B.6 (Isomorphic types are the same size)

Θ ` P ′ ≤+Q Subderivation
Θ ` Q ≤+ P ′′

Θ ` P ′ ≤+ P By i.h. (|Q|NQ = |P ′|NQ < |P ′ → N ′|NQ)
Θ ` N ≤−M Subderivation
Θ `M ≤−N ′ ′′

Θ ` N ≤−N ′ By i.h. (|N ′|NQ < |P ′ → N ′|NQ)
Z Θ ` P → N ≤− P ′ → N ′ By ≤±Darrow

• Case Θ ` Q ≤+ P Θ ` P ≤+ Q

Θ ` ↑P ≤− ↑Q ≤±Dshift↑ Θ ` P ′ ≤+ Q Θ ` Q ≤+ P ′

Θ ` ↑Q ≤− ↑P ′ ≤±Dshift↑
Symmetrical to ≤±Dshift↓ case.

35

C’ Weak context extension

Lemma C.1 (=⇒ subsumes −→). If Θ −→ Θ ′, then Θ =⇒ Θ ′.

Proof. By rule induction over the Θ −→ Θ ′ judgment.

• Case

· −→ ·
Cempty

Z · =⇒ · By Wcempty

• Case Θ −→ Θ ′

Θ,α −→ Θ ′, α
Cuvar

Θ =⇒ Θ ′ By i.h.
Z Θ,α =⇒ Θ ′, α By Wcuvar

• Case Θ −→ Θ ′

Θ, α̂ −→ Θ ′, α̂
Cunsolvedguess

Θ =⇒ Θ ′ By i.h.
Z Θ, α̂ =⇒ Θ ′, α̂ By Wcunsolvedguess

• Case Θ −→ Θ ′

Θ, α̂ −→ Θ ′, α̂ = P
Csolveguess

Θ =⇒ Θ ′ By i.h.
Z Θ, α̂ =⇒ Θ ′, α̂ = P By Wcsolveguess

• Case
Θ −→ Θ ′ ‖Θ‖ ` P ∼=

+ Q

Θ, α̂ = P −→ Θ ′, α̂ = Q
Csolvedguess

Θ =⇒ Θ ′ By i.h.
‖Θ‖ ` P ∼=

+Q Premise
Z Θ, α̂ = P =⇒ Θ ′, α̂ = P By Wcsolvedguess

Lemma C.2 (Weak context extension is reflexive). For all contexts Θ, Θ =⇒ Θ.

36

Proof. Corollary of Lemma D.1 (Context extension is reflexive).

Θ −→ Θ By Lemma D.1 (Context extension is reflexive)
Z Θ =⇒ Θ By Lemma C.1 (=⇒ subsumes −→)

Lemma C.3 (Equality of declarative contexts (weak)). If Θ =⇒ Θ ′, then ‖Θ‖ = ‖Θ ′‖.

Proof. By rule induction over the Θ =⇒ Θ ′ judgment.

• Case

· =⇒ ·
Wcempty

Z ‖·‖ = ‖·‖

• Case Θ =⇒ Θ ′

Θ,α =⇒ Θ ′, α
Wcuvar

‖Θ,α‖ = ‖Θ‖ , α By definition of ‖−‖
= ‖Θ ′‖ , α By i.h.
= ‖Θ ′, α‖ By definition of ‖−‖

• Case Θ =⇒ Θ ′

Θ, α̂ =⇒ Θ ′, α̂
Wcunsolvedguess

‖Θ, α̂‖ = ‖Θ‖ By definition of ‖−‖
= ‖Θ ′‖ By i.h.
= ‖Θ ′, α̂‖ By definition of ‖−‖

• Case Θ =⇒ Θ ′

Θ, α̂ =⇒ Θ ′, α̂ = P
Wcsolveguess

‖Θ, α̂‖ = ‖Θ‖ By definition of ‖−‖
= ‖Θ ′‖ By i.h.
= ‖Θ ′, α̂ = P‖ By definition of ‖−‖

• Case
Θ =⇒ Θ ′ ‖Θ‖ ` P ∼=

+ Q

Θ, α̂ = P =⇒ Θ ′, α̂ = Q
Wcsolvedguess

37

‖Θ, α̂ = P‖ = ‖Θ‖ By definition of ‖−‖
= ‖Θ ′‖ By i.h.
= ‖Θ ′, α̂ = Q‖ By definition of ‖−‖

• Case Θ =⇒ Θ ′

Θ =⇒ Θ ′, α̂
Wcnewunsolvedguess

‖Θ‖ = ‖Θ ′‖ By i.h.
= ‖Θ ′, α̂‖ By definition of ‖−‖

• Case Θ =⇒ Θ ′

Θ =⇒ Θ ′, α̂ = P
Wcnewsolvedguess

‖Θ‖ = ‖Θ ′‖ By i.h.
= ‖Θ ′, α̂ = P‖ By definition of ‖−‖

Lemma C.4 (Weak context extension is transitive). If Θ =⇒ Θ ′ and Θ ′ =⇒ Θ ′′, then Θ =⇒ Θ ′′.

Proof. By rule induction over the Θ ′ =⇒ Θ ′′ judgment.

• Neither Wcnewunsolvedguess nor Wcnewunsolvedguess:

By rule induction over the Θ =⇒ Θ ′ judgment.

– Case

· =⇒ ·
Wcempty

Z · =⇒ Θ ′′ Assumption

– Case Θ =⇒ Θ ′

Θ,α =⇒ Θ ′, α
Wcuvar

By inversion on the second assumption (Wcuvar), the last context must be Θ ′′, α.

Θ ′ =⇒ Θ ′′ Inversion (Wcuvar)
Θ =⇒ Θ ′′ By i.h.

Z Θ,α =⇒ Θ ′′, α By Wcuvar

38

– Case Θ =⇒ Θ ′

Θ, α̂ =⇒ Θ ′, α̂
Wcunsolvedguess

By inversion on the second assumption, we must have either Θ ′, α̂ =⇒ Θ ′′, α̂ (Wcunsolvedguess)
or Θ ′, α̂ =⇒ Θ ′′, α̂ = P (Wcsolveguess):

* Case Θ ′, α̂ =⇒ Θ ′′, α̂:

Θ ′ =⇒ Θ ′′ Inversion (Wcunsolvedguess)

Θ =⇒ Θ ′′ By i.h.
Z Θ, α̂ =⇒ Θ ′′, α̂ By Wcunsolvedguess

* Case Θ ′, α̂ =⇒ Θ ′′, α̂ = P:

Θ ′ =⇒ Θ ′′ Inversion (Wcsolveguess)

Θ =⇒ Θ ′′ By i.h.
Z Θ, α̂ =⇒ Θ ′′, α̂ = P By Wcsolveguess

– Case
Θ =⇒ Θ ′ ‖Θ‖ ` P ∼=

+ Q

Θ, α̂ = P =⇒ Θ ′, α̂ = Q
Wcsolvedguess

By inversion on the second assumption (Wcsolvedguess), the last context must be of the form
Θ ′′, α̂ = R.

Θ ′, α̂ = Q =⇒ Θ ′′, α̂ = R Assumption
Θ ′ =⇒ Θ ′′ Inversion (Wcsolvedguess)

‖Θ ′‖ ` Q ∼=
+ R ′′

Θ =⇒ Θ ′′ By i.h.
‖Θ‖ ` P ∼=

+Q Premise
‖Θ‖ ` Q ∼=

+ R By Lemma C.3 (Equality of declarative contexts (weak))
‖Θ‖ ` P ∼=

+ R By Lemma B.7 (Declarative subtyping is transitive)
Z Θ, α̂ = P =⇒ Θ ′′, α̂ = R By Wcsolvedguess

– Case Θ =⇒ Θ ′

Θ, α̂ =⇒ Θ ′, α̂ = P
Wcsolveguess

By inversion on the second assumption (Wcsolvedguess), the last context must be of the form
Θ ′′, α̂ = Q.

Θ ′, α̂ = P =⇒ Θ ′′, α̂ = Q Assumption
Θ ′ =⇒ Θ ′′ Inversion (Wcsolvedguess)

Θ =⇒ Θ ′′ By i.h.
Z Θ, α̂ =⇒ Θ ′′, α̂ = Q By Wcsolveguess

39

– Case Θ =⇒ Θ ′

Θ =⇒ Θ ′, α̂
Wcnewunsolvedguess

By inversion on the second assumption, we must have either Θ ′, α̂ =⇒ Θ ′′, α̂ (Wcunsolvedguess)
or Θ ′, α̂ =⇒ Θ ′′, α̂ = P (Wcsolvedguess):

* Case Θ ′, α̂ =⇒ Θ ′′, α̂:

Θ ′, α̂ =⇒ Θ ′′, α̂ Assumption
Θ ′ =⇒ Θ ′′ Inversion (Wcunsolvedguess)

Θ =⇒ Θ ′′ By i.h.
Θ =⇒ Θ ′′, α̂ By Wcnewunsolvedguess

* Case Θ ′, α̂ =⇒ Θ ′′, α̂ = P:

Θ ′, α̂ =⇒ Θ ′′, α̂ = P Assumption
Θ ′ =⇒ Θ ′′ Inversion (Wcsolvedguess)

Θ =⇒ Θ ′′ By i.h.
Θ =⇒ Θ ′′, α̂ = P By Wcnewsolvedguess

– Case Θ =⇒ Θ ′

Θ =⇒ Θ ′, α̂ = P
Wcnewsolvedguess

By inversion on the second assumption (Wcsolvedguess), the last context must be of the form
Θ ′′, α̂ = Q.

Θ ′, α̂ = P =⇒ Θ ′′, α̂ = Q Assumption
Θ ′ =⇒ Θ ′′ Inversion (Wcsolvedguess)

Θ =⇒ Θ ′′ By i.h.
Θ =⇒ Θ ′′, α̂ = Q By Wcnewsolvedguess

• Case Θ ′ =⇒ Θ ′′

Θ ′ =⇒ Θ ′′, α̂
Wcnewunsolvedguess

Θ =⇒ Θ ′′ By i.h.
Z Θ =⇒ Θ ′′, α̂ By Wcnewunsolvedguess

• Case Θ ′ =⇒ Θ ′′

Θ ′ =⇒ Θ ′′, α̂ = P
Wcnewunsolvedguess

40

Θ =⇒ Θ ′′ By i.h.
Z Θ =⇒ Θ ′′, α̂ = P By Wcnewsolvedguess

Lemma C.5 (Weak context extension preserves well-formedness). If Θ ` A type± and Θ =⇒ Θ ′ then
Θ ′ ` A type±.

Proof. By rule induction over the Θ ` A type± judgment.

• Case α ∈ FUV(Θ)
Θ ` α type+

Twfuvar

α ∈ FUV(Θ) Premise
α ∈ FUV(Θ ′) Inversion (must have instance of Wcuvar)

Z Θ ′ ` α type+ By Twfuvar

• Case α̂ ∈ FEV(Θ)
Θ ` α̂ type+

Twfguess

α̂ ∈ FEV(Θ) Premise
α̂ ∈ FEV(Θ ′) Inversion (must have instance of Wcunsolvedguess, Wcsolveguess, or Wcsolvedguess)

Z Θ ′ ` α̂ type+ By Twfguess

• Case Θ ` N type−

Θ ` ↓N type+
Twfshift↓

Θ ′ ` N type− By i.h.
Z Θ ′ ` ↓N type− By Twfshift↓

• Case Θ,α ` N type−

Θ ` ∀α.N type−
Twfforall

Θ =⇒ Θ ′ Assumption
Θ,α =⇒ Θ ′, α By Wcuvar

Θ ′, α ` N type− By i.h.
Z Θ ′ ` ∀α.N type− By Twfforall

41

• Case Θ ` P type+ Θ ` N type−

Θ ` P → N type−
Twfarrow

Θ ′ ` P type+ By i.h.
Θ ′ ` N type− By i.h.

Z Θ ′ ` P → N type− By Twfarrow

• Case Θ ` P type+

Θ ` ↑P type−
Twfshift↑

Θ ′ ` P type+ By i.h.
Θ ′ ` ↑P type− By Twfshift↑

Lemma C.6 (Weak context extension preserves w.f. envs). If Θ =⇒ Θ ′ and Θ ` Γ env, then Θ ′ ` Γ env.

Proof. By rule induction over the definition of well-formed typing environments.

• Case

Θ ` · env
Ewfempty

Z Θ ′ ` · env By Ewfempty

• Case Θ ` Γ env Θ ` P type+ P ground
Θ ` Γ, x : P env

Ewfvar

Θ ` Γ, x : P env Assumption

Θ ` Γ env By premise
Θ ′ ` Γ env By i.h.

Θ ` P type± By premise
Θ ′ ` P type± By Lemma C.5

P ground By premise

Z Θ ′ ` Γ, x : P env By Ewfvar

42

Lemma C.7 (The extended context makes the type ground (weak)). If Θ ctx, Θ ′ ctx, Θ =⇒ Θ ′, and [Θ ′][Θ]A
ground, then [Θ ′]A ground.

Proof. Consider an arbitrary existential variable α̂ in A. Then for [Θ ′][Θ]A to be ground, we must have at
least one of α̂ = P ∈ Θ, or α̂ = Q ∈ Θ ′. We know that applying the contexts to the type will never introduce
a non-ground type since Θ ctx and Θ ′ ctx.

By inversion on Θ =⇒ Θ ′, we can also see that if an existential variable is solved in the left-hand side
context, then it must also be solved in the right-hand side context. Therefore we must have that α̂ = Q ∈ Θ ′,
and by Θ ′ ctx we know that Q is ground.

We now know that every existential variable in A is solved as a ground type by Θ ′, hence [Θ ′]A must be
ground.

Lemma C.8 (Extending context preserves groundness (weak)). If Θ ctx, Θ ′ ctx, Θ =⇒ Θ ′, and [Θ]A ground,
then [Θ ′]A ground.

Proof. Corollary of Lemma C.7 (The extended context makes the type ground (weak)).

Θ ctx Assumption
Θ ′ ctx Assumption

Θ =⇒ Θ ′ Assumption
[Θ]A ground Assumption

[Θ ′][Θ]A ground By Lemma D.5 (Applying a context to a ground type)
Z [Θ ′]A ground By Lemma C.7 (The extended context makes the type ground (weak))

D’ Context extension

Lemma D.1 (Context extension is reflexive). For all contexts Θ, Θ −→ Θ.

Proof. By structural induction on Θ.

• Case ·:

Z · −→ · By Cempty

• Case Θ,α:

Θ −→ Θ By i.h.
Z Θ,α −→ Θ,α By Cuvar

• Case Θ, α̂:

Θ −→ Θ By i.h.
Z Θ, α̂ −→ Θ, α̂ By Cunsolvedguess

43

• Case Θ, α̂ = P:

Θ −→ Θ By i.h.
Θ ` P ∼=

+ P By Lemma B.1 (Declarative subtyping is reflexive)
Z Θ, α̂ = P −→ Θ, α̂ = P By Csolvedguess

Lemma D.2 (Equality of declarative contexts). If Θ −→ Θ ′, then ‖Θ‖ = ‖Θ ′‖.

Proof. Corollary of Lemma C.3 (Equality of declarative contexts (weak)).

Θ −→ Θ ′ Assumption
Θ =⇒ Θ ′ By Lemma C.1 (=⇒ subsumes −→)

Z ‖Θ‖ = ‖Θ ′‖ By Lemma C.3 (Equality of declarative contexts (weak))

Lemma D.3 (Context extension is transitive). If Θ −→ Θ ′ and Θ ′ −→ Θ ′′, then Θ −→ Θ ′′.

Proof. By rule induction over the Θ −→ Θ ′ judgment.

• Case

· −→ ·
Cempty

Z · −→ Θ ′′ Assumption

• Case Θ −→ Θ ′

Θ,α −→ Θ ′, α
Cuvar

By inversion on the second assumption (Cuvar), the last context must be Θ ′′, α.

Θ ′ −→ Θ ′′ Inversion (Cuvar)
Θ −→ Θ ′′ By i.h.

Z Θ,α −→ Θ ′′, α By Cuvar

• Case Θ −→ Θ ′

Θ, α̂ −→ Θ ′, α̂
Cunsolvedguess

By inversion on the second assumption, we must have either Θ ′, α̂ −→ Θ ′′, α̂ (Cunsolvedguess) or
Θ ′, α̂ −→ Θ ′′, α̂ = P (Csolveguess):

– Case Θ ′, α̂ −→ Θ ′′, α̂:

44

Θ ′ −→ Θ ′′ Inversion (Cunsolvedguess)

Θ −→ Θ ′′ By i.h.
Z Θ, α̂ −→ Θ ′′, α̂ By Cunsolvedguess

– Case Θ ′, α̂ −→ Θ ′′, α̂ = P:

Θ ′ −→ Θ ′′ Inversion (Csolveguess)

Θ −→ Θ ′′ By i.h.
Z Θ, α̂ −→ Θ ′′, α̂ = P By Csolveguess

• Case
Θ −→ Θ ′ ‖Θ‖ ` P ∼=

+ Q

Θ, α̂ = P −→ Θ ′, α̂ = Q
Csolvedguess

By inversion on the second assumption (Csolvedguess), the last context must be of the form Θ ′′, α̂ = R.

Θ ′, α̂ = Q −→ Θ ′′, α̂ = R Assumption
Θ ′ −→ Θ ′′ Inversion (Csolvedguess)

‖Θ ′‖ ` Q ∼=
+ R ′′

Θ −→ Θ ′′ By i.h.
‖Θ‖ ` P ∼=

+Q Premise
‖Θ‖ ` Q ∼=

+ R By Lemma D.2 (Equality of declarative contexts)
‖Θ‖ ` P ∼=

+ R By Lemma B.7 (Declarative subtyping is transitive)
Z Θ, α̂ = P −→ Θ ′′, α̂ = R By Csolvedguess

• Case Θ −→ Θ ′

Θ, α̂ −→ Θ ′, α̂ = P
Csolveguess

By inversion on the second assumption (Csolvedguess), the last context must be of the form Θ ′′, α̂ = Q.

Θ ′, α̂ = P −→ Θ ′′, α̂ = Q Assumption
Θ ′ −→ Θ ′′ Inversion (Csolvedguess)

Θ −→ Θ ′′ By i.h.
Z Θ, α̂ −→ Θ ′′, α̂ = Q By Csolveguess

Lemma D.4 (Context extension preserves w.f.). If Θ ` A type± and Θ −→ Θ ′, then Θ ′ ` A type±.

Proof. By rule induction on Θ ` A type±.

45

• Case α ∈ UV(Θ)
Θ ` α type+

Twfuvar

α ∈UV(Θ) Subderivation
Θ −→ Θ ′ Assumption
α ∈UV(Θ ′) Inversion (Cuvar)

Z Θ ′ ` α type+ By Twfuvar

• Case α̂ ∈ EV(Θ)
Θ ` α̂ type+

Twfguess

Θ −→ Θ ′ Assumption
α̂ ∈EV(Θ) Subderivation
α̂ ∈EV(Θ ′) Must have an instance of Cunsolvedguess, Csolveguess, or Csolvedguess

Z Θ ′ ` α̂ type+ By Twfuvar

• Case Θ ` N type−

Θ ` ↓N type+
Twfshift↓

Θ ` N type− Subderivation
Θ −→ Θ ′ Assumption
Θ ′ ` N type− By i.h.

Z Θ ′ ` ↓N type+ By Twfshift↓
• Case Θ,α ` N type−

Θ ` ∀α.N type−
Twfforall

Θ,α ` N type− Subderivation
Θ −→ Θ ′ Assumption

Θ,α −→ Θ ′, α By Cuvar

Θ ′, α ` N type− By i.h.
Z Θ ′ ` ∀α.N type− By Twfforall

• Case Θ ` P type+ Θ ` N type−

Θ ` P → N type−
Twfarrow

Θ ` P type+ Subderivation
Θ −→ Θ ′ Assumption
Θ ′ ` P type+ By i.h.

46

Θ ` N type− Subderivation
Θ ′ ` N type− By i.h.

Z Θ ′ ` P → N type− By Twfarrow

• Case Θ ` P type+

Θ ` ↑P type−
Twfshift↑

Θ ` P type+ Subderivation
Θ −→ Θ ′ ′′

Θ ′ ` P type+ By i.h.
Z Θ ′ ` ↑P type− By Twfshift↑

Lemma D.5 (Applying a context to a ground type). If A ground, then [Θ]A = A.

Proof. By structural induction on Θ.

• Case ·:

[·]A = A By definition of [−]−

• Case Θ,α:

[Θ,α]A = [Θ]A By definition of [−]−

= A By i.h.

• Case Θ, α̂:

[Θ, α̂]A = [Θ]A By definition of [−]−

= A By i.h.

• Case Θ, α̂ = P:

[Θ, α̂ = P]A = [Θ]([P/α̂]A) By definition of [−]−

= [Θ]A A ground, so no α̂s to substitute
= A By i.h.

Lemma D.6 (Context application is idempotent). If Θ ctx, then [Θ][Θ]A = [Θ]A.

47

Proof. By structural induction on Θ:.

• Case ·:

[·][·]A = A By definition of [−]−

• Case Θ,α:

[Θ,α][Θ,α]A = [Θ][Θ]A By definition of [−]−

= A By i.h.

• Case Θ, α̂:

[Θ, α̂][Θ, α̂]A = [Θ][Θ]A By definition of [−]−

= A By i.h.

• Case Θ, α̂ = P:

[Θ, α̂ = P][Θ, α̂ = P]A = [Θ][P/α̂][Θ][P/α̂]A By definition of [−]−

= [P/α̂][Θ][Θ]A P ground and Θ, α̂ = P ctx, so α̂ does not reappear
= [P/α̂][Θ]A By i.h.
= [Θ][P/α̂]A P ground and Θ, α̂ = P ctx, so α̂ does not reappear
= [Θ, α̂ = P]A By definition of [−]−

Lemma D.7 (The extended context makes the type ground). IfΘ ctx, Θ ′ ctx, Θ −→ Θ ′, and [Θ ′][Θ]A ground,
then [Θ ′]A ground.

Proof. Corollary of Lemma C.7 (The extended context makes the type ground (weak)).

Θ ctx Assumption
Θ ′ ctx Assumption

Θ −→ Θ ′ Assumption
Θ =⇒ Θ ′ By Lemma C.1 (=⇒ subsumes −→)

[Θ ′][Θ]A ground Assumption
[Θ ′]A ground By Lemma C.7 (The extended context makes the type ground (weak))

Lemma D.8 (Extending context preserves groundness). If Θ ctx, Θ ′ ctx, Θ −→ Θ ′, and [Θ]A ground, then
[Θ ′]A ground.

Proof. Corollary of Lemma C.8 (Extending context preserves groundness (weak)).

48

Θ ctx Assumption
Θ ′ ctx Assumption

Θ −→ Θ ′ Assumption
Θ =⇒ Θ ′ By Lemma C.1 (=⇒ subsumes −→)
[Θ]A ground Assumption
[Θ ′]A ground By Lemma C.8 (Extending context preserves groundness (weak))

E’ Well-formedness of subtyping

Lemma E.1 (Applying context to the type preserves w.f.). If Θ ctx and Θ ` A type±, then Θ ` [Θ]A type±.

Proof. By rule induction on Θ ` A type±.

• Case α ∈ UV(Θ)
Θ ` α type+

Twfuvar

Θ ` α type+ Assumption
[Θ]α = α By definition of [−]−

Z Θ ` [Θ]α type+ By above two statements

• Case α̂ ∈ EV(Θ)
Θ ` α̂ type+

Twfguess

Case (α̂ = P) ∈ Θ:

Θ ctx Assumption
Θ ` P type+ Must have an instance of Cwfsolvedguess

[Θ]α̂ = P By definition of [−]−

Z Θ ` [Θ]α̂ type+ By above two statements

Case (α̂ = P) /∈ Θ:

Θ ` α̂ type+ Assumption
[Θ]α̂ = α̂ Since (α̂ = P) /∈ Θ

Z Θ ` [Θ]α̂ type+ By above two statements

• Case Θ ` N type−

Θ ` ↓N type+
Twfshift↓

Θ ctx Assumption

49

Θ ` N type− Subderivation
Θ ` [Θ]N type− By i.h.
Θ ` ↓[Θ]N type+ By Twfshift↓

Z Θ ` [Θ]↓N type+ By definition of [−]−

• Case Θ,α ` N type−

Θ ` ∀α.N type−
Twfforall

Θ ctx Assumption
Θ,α ctx By Cwfuvar

Θ,α ` N type− Subderivation
Θ,α ` [Θ,α]N type− By i.h.
Θ,α ` [Θ]N type− By definition of [−]−

Θ ` ∀α. [Θ]N type− By Twfforall

Z Θ ` [Θ]∀α.N type− By definition of [−]−

• Case Θ ` P type+ Θ ` N type−

Θ ` P → N type−
Twfarrow

Θ ctx Assumption
Θ ` P type+ Subderivation

Θ ` [Θ]P type+ By i.h.
Θ ` N type− Subderivation

Θ ` [Θ]N type− By i.h.
Θ ` [Θ]P → [Θ]N type− By Twfarrow

Z Θ ` [Θ](P → N) type− By definition of [−]−

• Case Θ ` P type+

Θ ` ↑P type−
Twfshift↑

Θ ctx Assumption
Θ ` P type+ Subderivation

Θ ` [Θ]P type+ By i.h.
Θ ` ↑[Θ]P type− By Twfshift↑

Z Θ ` [Θ]↑P type− By definition of [−]−

Lemma E.2 (Algorithmic subtyping is w.f.).

• If Θ ` P ≤+ Q a Θ ′, Θ ctx, P ground, and [Θ]Q = Q, then Θ ′ ctx, Θ −→ Θ ′, and [Θ ′]Q ground.

50

• If Θ ` N ≤− M a Θ ′, Θ ctx, M ground, and [Θ]N = N, then Θ ′ ctx, Θ −→ Θ ′, and [Θ ′]N ground.

Proof. By mutual induction on the derivation of Θ ` A ≤± B a Θ ′.

• Case

ΘL, α,ΘR ` α ≤+ α a ΘL, α,ΘR

≤±Arefl

Z ΘL, α,ΘR ctx Assumption
Z ΘL, α,ΘR −→ ΘL, α,ΘR By Lemma D.1 (Context extension is reflexive)

[ΘL, α,ΘR]α = α Assumption
α ground Assumption

Z [ΘL, α,ΘR]α ground By the previous two statements

• Case ΘL ` P type+ P ground
ΘL, α̂, ΘR ` P ≤+ α̂ a ΘL, α̂ = P,ΘR

≤±Ainst

ΘL, α̂, ΘR ctx Assumption
ΘL ` P type+ Subderivation

P ground Assumption
Z ΘL, α̂ = P,ΘR ctx Replacing the instance of Cwfunsolvedguess corresponding

to α̂ with an instance of Cwfsolvedguess

ΘL −→ ΘL By Lemma D.1 (Context extension is reflexive)
ΘL, α̂ −→ ΘL, α̂ = P By Csolveguess

ΘR −→ ΘR By Lemma D.1 (Context extension is reflexive)
ΘL, α̂, ΘR −→ ΘL, α̂ = P,ΘR Reapplying rules from ΘR −→ ΘR

[ΘL, α̂ = P,ΘR]α̂ = P By definition of [−]−

Z [ΘL, α̂ = P,ΘR]α̂ ground By the previous two statements

• Case Θ `M ≤− N a Θ ′ Θ ′ ` N ≤− [Θ ′]M a Θ ′′

Θ ` ↓N ≤+ ↓M a Θ ′′ ≤±Ashift↓
↓N ground Assumption

[Θ]↓M = ↓M Assumption

We have:

Θ `M ≤−N a Θ ′ Subderivation
Θ ctx Assumption
N ground By definition of ground

[Θ]M = M By definition of [−]−

Therefore:

51

Θ ′ ctx By i.h.
Θ −→ Θ ′ ′′

[Θ ′]M ground ′′

Now, looking at the second premise, we have:

Θ ′ ` N ≤− [Θ ′]M a Θ ′′ Subderivation
Θ ′ ctx Above

[Θ ′]M ground Above
[Θ ′]N = N By Lemma D.5 (Applying a context to a ground type)

Therefore:

Θ ′ −→ Θ ′′ By i.h.
Z Θ ′′ ctx ′′

Z Θ −→ Θ ′′ By Lemma D.3 (Context extension is transitive)
[Θ ′′]M ground By Lemma D.8 (Extending context preserves groundness)

Z [Θ ′′]↓M ground By definition of ground

• Case Θ,α ` N ≤− M a Θ ′, α
Θ ` N ≤− ∀α.M a Θ ′

≤±Aforallr

Θ ctx Assumption
∀α.M ground Assumption
[Θ]N = N Assumption

We have:

Θ,α ` N ≤−M a Θ ′, α Subderivation
Θ,α ctx By Cwfuvar

M ground By definition of ground
[Θ,α]N = N Since [Θ,α]N = [Θ]N by definition of [−]−

Therefore:

Θ ′, α ctx By i.h.
Θ,α −→ Θ ′, α ′′

[Θ ′, α]N ground ′′

Z Θ ′ ctx Inversion (Cwfuvar)
Z Θ −→ Θ ′ Inversion (Cuvar)
Z [Θ ′]N ground Since [Θ ′]N = [Θ ′, α]N by definition of [−]−

• Case Θ, α̂ ` [α̂/α]N ≤− M a Θ ′, α̂ [= P] M 6= ∀α.M ′

Θ ` ∀α.N ≤− M a Θ ′
≤±Aforalll

52

Θ ctx Assumption
[Θ]∀α.N = ∀α.N Assumption

[Θ]N = N By definition of [−]−

We have:

Θ, α̂ ` [α̂/α]N ≤−M a Θ ′, α̂ [= P] Subderivation
Θ, α̂ ctx By Cwfunsolvedguess

M ground Assumption
[Θ]α̂ = α̂ Since Θ, α̂ ctx

[Θ, α̂][α̂/α]N = [α̂/α]N Since [Θ]α̂ = α̂ and [Θ]N = N

Therefore:

Θ ′, α̂ [= P] ctx By i.h.
Θ, α̂ −→ Θ ′, α̂ [= P] ′′

[Θ ′, α̂ [= P]][α̂/α]N ground ′′

Z Θ ′ ctx Inversion (Cwfuvar)
Z Θ −→ Θ ′ Inversion (Cuvar)

[Θ ′]N ground Using above, α ground, and α̂ /∈ FEV(N)

Z [Θ ′]∀α.N ground By definition of ground and [−]−

• Case Θ ` Q ≤+ P a Θ ′ Θ ′ ` [Θ ′]N ≤− M a Θ ′′

Θ ` P → N ≤− Q→M a Θ ′′
≤±Aarrow

Q→M ground Assumption
[Θ](P → N) = P → N Assumption

We have:

Θ ` Q ≤+ P a Θ ′ Subderivation
Θ ctx Assumption
Q ground Since Q→M ground

[Θ]P = P By definition of [−]−

Therefore:

Θ ′ ctx By i.h.
Θ −→ Θ ′ ′′

[Θ ′]P ground ′′

Looking at the second premise, we have:

Θ ′ ` [Θ ′]N ≤−M a Θ ′′ Subderivation
Θ ′ ctx Above
M ground Since Q→M ground

[Θ ′][Θ ′]N = [Θ ′]N By Lemma D.6 (Context application is idempotent)

Therefore:

53

Z Θ ′′ ctx By i.h.
Θ ′ −→ Θ ′′ ′′

[Θ ′′][Θ ′]N ground ′′

Z Θ −→ Θ ′′ By Lemma D.3 (Context extension is transitive)
[Θ ′′]N ground By Lemma D.7 (The extended context makes the type ground)
[Θ ′′]P ground Applying Lemma D.8 (Extending context preserves groundness)

with [Θ ′]P ground
Z [Θ ′′]P → N ground From equations above

• Case Θ ` Q ≤+ P a Θ ′ Θ ′ ` [Θ ′]P ≤+ Q a Θ ′′

Θ ` ↑P ≤− ↑Q a Θ ′′ ≤±Ashift↑
↑Q ground Assumption

[Θ]↑P = ↑P Assumption

We have:

Θ ` Q ≤+ P a Θ ′ Subderivation
Θ ctx Assumption
Q ground Since ↑Q ground

[Θ]P = P By definition of [−]−

Therefore:

Θ ′ ctx By i.h.
Θ −→ Θ ′ ′′

[Θ ′]P ground ′′

Looking at the second premise, we have:

Θ ′ ` [Θ ′]P ≤+Q a Θ ′′ Subderivation
Θ ′ ctx Above

[Θ ′]P ground Above
[Θ ′]Q = Q By Lemma D.5 (Applying a context to a ground type)

Therefore:

Z Θ ′′ ctx By i.h.
Θ ′ −→ Θ ′′ ′′

Z Θ −→ Θ ′′ By Lemma D.3 (Context extension is transitive)
[Θ ′′]P ground Applying Lemma D.8 (Extending context preserves groundness)

with [Θ ′]P ground
Z [Θ ′′]↑P ground By definition of groundness and above

54

F’ Soundness of subtyping

F’.1 Lemmas for soundness

Lemma F.1 (Completing context preserves w.f.). If Θ ` A type± and A ground then ‖Θ‖ ` A type±.

Proof. By rule induction on Θ ` A type±.

• Case α ∈ UV(Θ)
Θ ` α type+

Twfuvar

α ∈UV(Θ) Subderivation
α ∈UV([Ω]Θ) By definition of [−]−

Z ‖Θ‖ ` α type+ By Twfuvar

• Case α̂ ∈ EV(Θ)
Θ ` α̂ type+

Twfguess

Not possible, since A is ground.

• Case Θ ` N type−

Θ ` ↓N type+
Twfshift↓

↓N ground Assumption
Θ ` N type− Subderivation

N ground By definition of ground
‖Θ‖ ` N type− By i.h.

Z ‖Θ‖ ` ↓N type+ By Twfshift↓
• Case Θ,α ` N type−

Θ ` ∀α.N type−
Twfforall

∀α.N ground Assumption
Θ,α ` N type− Subderivation

N ground By definition of ground
[Ω](Θ,α) ` N type− By i.h.
[Ω]Θ,α ` N type− By definition of [−]−

Z ‖Θ‖ ` ∀α.N type− By Twfforall

• Case Θ ` P type+ Θ ` N type−

Θ ` P → N type−
Twfarrow

55

P → N ground Assumption
Θ ` P type+ Subderivation

P ground By definition of ground
‖Θ‖ ` P type+ By i.h.
Θ ` N type− Subderivation

N ground By definition of ground
‖Θ‖ ` N type− By i.h.

Z ‖Θ‖ ` P → N type− By Twfarrow

• Case Θ ` P type+

Θ ` ↑P type−
Twfshift↑

↑P ground Assumption
Θ ` P type+ Subderivation

P ground By definition of ground
‖Θ‖ ` P type+ By i.h.

Z ‖Θ‖ ` ↑P type− By Twfshift↑

Lemma F.2 (=⇒ leads to isomorphic types). If:

1. Θ ` A type±

2. Θ =⇒ Θ ′

3. [Θ ′]A ground

4. Θ ctx

5. Θ ′ ctx

then ‖Θ‖ ` [Θ ′][Θ]A ∼=
± [Θ ′]A.

Proof. By rule induction on Θ ` A type±.

• Case α ∈ UV(Θ)
Θ ` α type+

Twfuvar

Θ ` α type+ Subderivation
‖Θ‖ ` α type+ By Lemma F.1 (Completing context preserves w.f.)

‖Θ‖ ` α ≤+ α By ≤±Drefl

Z ‖Θ‖ ` [Θ ′][Θ]α ∼=
+ [Θ ′]α By Lemma D.5 (Applying a context to a ground type)

56

• Case α̂ ∈ EV(Θ)
Θ ` α̂ type+

Twfguess

Case [Θ]α̂ = α̂:

(α̂ = P) ∈Θ ′ Where P = [Θ ′]α̂, since [Θ ′]α̂ ground
Θ ′ ` P type+ Inversion on Θ ′ ctx (must have instance of Cwfsolvedguess)

‖Θ ′‖ ` P type+ By Lemma F.1 (Completing context preserves w.f.)
‖Θ‖ ` P type+ By Lemma C.3 (Equality of declarative contexts (weak))

‖Θ‖ ` [Θ ′]α̂ type+ Substituting for P
‖Θ‖ ` [Θ ′]α̂ ∼=

+ [Θ ′]α̂ By Lemma B.1 (Declarative subtyping is reflexive)
Z ‖Θ‖ ` [Θ ′][Θ]α̂ ∼=

+ [Θ ′]α̂ As we are in the case that [Θ]α̂ = α̂

Case [Θ]α̂ 6= α̂:

‖ΘL‖ ` [ΘL]α̂ ∼=
+ [Θ ′L]α̂ Inversion on Θ =⇒ Θ ′ (must have instance of Wcsolvedguess,

Wcnewunsolvedguess, or Wcnewsolvedguess)
ΘL ` [ΘL]α̂ type+ Inversion on Θ ctx (must have instance of Cwfsolvedguess)

‖Θ‖ ` [Θ]α̂ ∼=
+ [Θ ′]α̂ By Lemma A.4 (Declarative subtyping weakening) and

Lemma D.5 (Applying a context to a ground type)
Z ‖Θ‖ ` [Θ ′][Θ]α̂ ∼=

+ [Θ ′]α̂ By Lemma D.5 (Applying a context to a ground type)

• Case Θ ` N type−

Θ ` ↓N type+
Twfshift↓

Θ ` N type− Subderivation
Θ =⇒ Θ ′ Assumption
[Θ ′]↓N ground Assumption
[Θ ′]N ground By definition of ground

Θ ctx Assumption
Θ ′ ctx Assumption

‖Θ‖ ` [Θ ′][Θ]N ∼=
− [Θ ′]N By i.h.

Z ‖Θ‖ ` [Θ ′][Θ]↓N ∼=
+ [Θ ′]↓N By ≤±Dshift↓ and definition of [−]−

• Case Θ,α ` N type−

Θ ` ∀α.N type−
Twfforall

Θ,α ` N type− Subderivation
Θ =⇒ Θ ′ Assumption

Θ,α =⇒ Θ ′, α By Wcuvar

[Θ ′]∀α.N ground Assumption
[Θ ′, α]N ground By definition of ground

Θ ctx Assumption

57

Θ,α ctx By Cwfuvar

Θ ′ ctx Assumption
Θ ′, α ctx By Cwfuvar

‖Θ,α‖ ` [Θ ′, α][Θ,α]N ∼=
− [Θ ′, α]N By i.h.

‖Θ,α‖ ` [Θ ′][Θ]N ∼=
− [Θ ′]N By definition of [−]−

‖Θ‖ , α ` [Θ ′][Θ]N ∼=
− [Θ ′]N By definition of ‖−‖

‖Θ‖ , α ` α type+ By Twfuvar

‖Θ‖ , α ` [Θ ′][Θ]∀α.N ≤− [Θ ′]N By ≤±Dforalll and definition of [−]−

‖Θ‖ ` [Θ ′][Θ]∀α.N ≤− [Θ ′]∀α.N By ≤±Dforallr (α /∈ FUV(N)) and definition of [−]−

‖Θ‖ , α ` α type+ Above
‖Θ‖ , α ` [Θ ′]∀α.N ≤− [Θ ′][Θ]N By ≤±Dforalll and definition of [−]−

‖Θ‖ ` [Θ ′]∀α.N ≤− [Θ ′][Θ]∀α.N By ≤±Dforallr (α /∈ FUV(N)) and definition of [−]−

Z ‖Θ‖ ` [Θ ′][Θ]∀α.N ∼=
− [Θ ′]∀α.N Since we have the two component judgments

• Case Θ ` P type+ Θ ` N type−

Θ ` P → N type−
Twfarrow

Θ ` P type+ Subderivation
Θ =⇒ Θ ′ Assumption

[Θ ′](P → N) ground Assumption
[Θ ′]P ground By definition of ground

Θ ctx Assumption
Θ ′ ctx Assumption

‖Θ‖ ` [Θ ′][Θ]P ∼=
+ [Θ ′]P By i.h.

Θ ` N type− Subderivation
Θ =⇒ Θ ′ Above
[Θ ′]N ground By definition of ground

Θ ctx Above
Θ ′ ctx Above

‖Θ‖ ` [Θ ′][Θ]N ∼=
− [Θ ′]N By i.h.

Z ‖Θ‖ ` [Θ ′][Θ](P → N) ∼=
− [Θ ′](P → N) By ≤±Darrow and definition of [−]−

• Case Θ ` P type+

Θ ` ↑P type−
Twfshift↑

Symmetric to Twfshift↓ case.

Lemma F.3 (=⇒ leads to isomorphic types (ground)). If:

1. Θ ` A type±

58

2. [Θ]A ground

3. Θ =⇒ Θ ′

4. Θ ctx

5. Θ ′ ctx

then ‖Θ‖ ` [Θ]A ∼=
± [Θ ′]A.

Proof. Corollary of Lemma F.2.

Θ ` A type± Assumption
Θ =⇒ Θ ′ ′′

[Θ]A ground Assumption
[Θ ′]A ground By Lemma C.8 (Extending context preserves groundness (weak))

Θ ctx ′′

Θ ′ ctx ′′

‖Θ‖ ` [Θ ′][Θ]A ∼=
± [Θ ′]A By Lemma F.2 (=⇒ leads to isomorphic types)

Z ‖Θ‖ ` [Θ]A ∼=
± [Θ ′]A By Lemma D.5 (Applying a context to a ground type)

Lemma F.4 (−→ leads to isomorphic types). If:

1. Θ ` A type±

2. Θ −→ Θ ′

3. [Θ ′]A ground

4. Θ ctx

5. Θ ′ ctx

then ‖Θ‖ ` [Θ ′][Θ]A ∼=
± [Θ ′]A.

Proof. Corollary of Lemma F.2 (=⇒ leads to isomorphic types).

Θ ` A type± Assumption
Θ −→ Θ ′ Assumption
Θ =⇒ Θ ′ By Lemma C.1 (=⇒ subsumes −→)
[Θ ′]A ground Assumption

Θ ctx Assumption
Θ ′ ctx Assumption

Z ‖Θ‖ ` [Θ ′][Θ]A ∼=
± [Θ ′]A By Lemma F.2 (=⇒ leads to isomorphic types)

Lemma F.5 (−→ leads to isomorphic types (ground)). If:

1. Θ ` A type±

59

2. [Θ]A ground

3. Θ −→ Θ ′

4. Θ ctx

5. Θ ′ ctx

then ‖Θ‖ ` [Θ]A ∼=
± [Θ ′]A.

Proof. Corollary of Lemma F.3 (=⇒ leads to isomorphic types (ground)).

Θ ` A type± Assumption
[Θ]A ground Assumption
Θ −→ Θ ′ Assumption
Θ =⇒ Θ ′ By Lemma C.1 (=⇒ subsumes −→)

Θ ctx Assumption
Θ ′ ctx Assumption

Z ‖Θ‖ ` [Θ]A ∼=
± [Θ ′]A By Lemma F.3 (=⇒ leads to isomorphic types (ground))

F’.2 Statement

Theorem F.6 (Soundness of algorithmic subtyping). Given a well-formed algorithmic context Θ and a well-
formed complete context Ω:

• If Θ ` P ≤+ Q a Θ ′, Θ ′ −→ Ω, P ground, [Θ]Q = Q, Θ ` P type+, and Θ ` Q type+,

then ‖Θ‖ ` P ≤+ [Ω]Q.

• If Θ ` N ≤− M a Θ ′, Θ ′ −→ Ω, M ground, [Θ]N = N, Θ ` N type−, and Θ `M type−,

then ‖Θ‖ ` [Ω]N ≤− M.

Proof. By mutual induction on the derivation of Θ ` P ≤± Q a Θ ′.

• Case

ΘL, α,ΘR ` α ≤+ α a ΘL, α,ΘR

≤±Arefl

α ∈UV(‖ΘL, α,ΘR‖) By definition of [−]−

‖ΘL, α,ΘR‖ ` α type+ By Twfuvar

‖ΘL, α,ΘR‖ ` α ≤+ α By ≤±Drefl

Z ‖ΘL, α,ΘR‖ ` α ≤+ [Ω]α By Lemma D.5 (Applying a context to a ground type)

• Case ΘL ` P type+ P ground
ΘL, α̂, ΘR ` P ≤+ α̂ a ΘL, α̂ = P,ΘR

≤±Ainst

ΘL, α̂ = P,ΘR −→ Ω Assumption
Ω = ΩL, α̂ = Q,ΩR Inversion (must have instance of Csolvedguess)

60

‖ΘL‖ ` P ∼=
+Q ′′

[Ω]α̂ = [ΩL, α̂ = Q,ΩR]α̂ Substituting for Ω
= Q By definition of [−]−

‖ΘL, α̂, ΘR‖ ` P ≤+Q By Lemma A.4 (Declarative subtyping weakening)
‖Ω‖ ` P ≤+ [Ω]α̂ Substituting using above equations

• Case Θ `M ≤− N a Θ ′ Θ ′ ` N ≤− [Θ ′]M a Θ ′′

Θ ` ↓N ≤+ ↓M a Θ ′′ ≤±Ashift↓
↓N ground Assumption

[Θ]↓M = ↓M ′′

We have:

Θ `M ≤−N a Θ ′ Subderivation
Θ ctx Assumption
N ground By definition of ground

[Θ]M = M By definition of [−]−

Therefore:

Θ ′ ctx By Lemma E.2 (Algorithmic subtyping is w.f.)
Θ −→ Θ ′ ′′

[Θ ′]M ground ′′

We have:

Θ ′ ` N ≤− [Θ ′]M a Θ ′′ Subderivation
Θ ′ ctx Above

[Θ ′]M ground Above
[Θ ′]N = N By Lemma D.5 (Applying a context to a ground type)

Therefore:

Θ ′ −→ Θ ′′ By Lemma E.2 (Algorithmic subtyping is w.f.)

Now show the antecedents of the induction hypothesis applied to the first premise of the algorithmic rule:

(1) Θ ctx Above
(2) Ω ctx Assumption
(3) Θ `M ≤−N a Θ ′ Subderivation

Θ ′′ −→ Ω Assumption
(4) Θ ′ −→ Ω By Lemma D.3 (Context extension is transitive)
(5) N ground Above
(6) [Θ]M = M Above
(7) Θ ` N type− Inversion on assumption (Twfshift↓)
(8) Θ `M type− ′′

We conclude:

‖Θ‖ ` [Ω]M ≤−N By i.h. applied to first premise, using (1–8)

61

Show the antecedents of the induction hypothesis applied this time to the second premise of the algorithmic
rule:

(9) Θ ′ ctx Above
(10) Ω ctx Above
(11) Θ ′ ` N ≤− [Θ ′]M a Θ ′′ Subderivation
(12) Θ ′′ −→ Ω Assumption
(13) [Θ ′]M ground Above
(14) [Θ ′]N = N Above
(15) Θ ′ ` N type− By Lemma D.4 (Context extension preserves w.f.)
(16) Θ ′ `M type− By Lemma D.4 (Context extension preserves w.f.)

We conclude:

‖Θ ′‖ ` [Ω]N ≤− [Θ ′]M By i.h. applied to second premise, using (9–16)
‖Θ ′‖ ` N ≤− [Θ ′]M By Lemma D.5 (Applying a context to a ground type)

≤− [Ω]M By Lemma F.5 (−→ leads to isomorphic types (ground))
‖Θ‖ ` N ≤− [Ω]M By Lemma D.2 (Equality of declarative contexts)

Applying the declarative rule:

‖Θ‖ ` ↓N ≤+ ↓[Ω]M By ≤±Dshift↓
Z ‖Θ‖ ` ↓N ≤+ [Ω]↓M By definition of [−]−

• Case Θ,α ` N ≤− M a Θ ′, α
Θ ` N ≤− ∀α.M a Θ ′

≤±Aforallr

Θ ctx Assumption
(1) Θ,α ctx By Cwfuvar

Ω ctx Assumption
(2) Ω,α ctx By Cwfuvar

(3) Θ,α ` N ≤−M a Θ ′, α Subderivation
Θ ′ −→ Ω Assumption

(4) Θ ′, α −→ Ω,α By Cuvar

∀α.M ground Assumption
(5) M ground Definition of ground
(6) [Θ]N = N Assumption

Θ ` N type− Assumption
(7) Θ,α ` N type− By Lemma A.2 (Term well-formedness weakening)

Θ ` ∀α.M type− Assumption
(8) Θ,α `M type− Inversion (Twfforall)

‖Θ,α‖ ` [Ω,α]N ≤−M By i.h., using (1–8)
‖Θ,α‖ ` [Ω]N ≤−M By definition of [−]−

Z ‖Θ‖ ` [Ω]N ≤− ∀α.M By ≤±Dforallr

62

• Case Θ, α̂ ` [α̂/α]N ≤− M a Θ ′, α̂ [= P] M 6= ∀α.M ′

Θ ` ∀α.N ≤− M a Θ ′
≤±Aforalll

Apply well-formedness to the premise:

(1) Θ, α̂ ` [α̂/α]N ≤−M a Θ ′, α̂ [= P] Subderivation
Θ ctx Assumption

(2) Θ, α̂ ctx By Cwfunsolvedguess

(3) M ground Assumption
[Θ]∀α.N = ∀α.N Assumption

(4) [Θ]N = N By definition of [−]−

Θ ′, α̂ [= P] ctx By Lemma E.2 (Algorithmic subtyping is w.f.), using (1–4)
Θ, α̂ −→ Θ ′, α̂ [= P] ′′

Now apply the inductive hypothesis:

(5) Θ, α̂ ctx Above
Ω ctx Assumption

Θ ′ ` P type+ Inversion Cwfsolvedguess)
P ground ′′

Θ ′ −→ Ω Assumption
Ω ` P type+ By Lemma D.4 (Context extension preserves w.f.)

(6) Ω, α̂ = P ctx By Cwfsolvedguess

(7) Θ, α̂ ` [α̂/α]N ≤−M a Θ ′, α̂ [= P] Subderivation
Θ ′ −→ Ω Assumption

(8) Θ ′, α̂ [= P] −→ Ω, α̂ = P By Csolveguess/ Csolvedguess

(9) M ground Assumption
[Θ]∀α.N = ∀α.N Assumption

[Θ]N = N By definition of [−]−

(10) [Θ, α̂][α̂/α]N = [α̂/α]N Θ, α̂ ctx, so α̂ /∈ EV(Θ)
(11) Θ ` ∀α.N type− Assumption
(12) Θ,α ` N type− Inversion (Twfforall)

‖Θ, α̂‖ ` [Ω, α̂ = P][α̂/α]N ≤−M By i.h., using (5–12)
‖Θ‖ ` [Ω, α̂ = P][α̂/α]N ≤−M By definition of ‖−‖

α /∈UV(Θ ′) Since α /∈ UV(Θ) as α fresh
[Ω, α̂ = P][α̂/α]N = [Ω][P/α̂][α̂/α]N By definition of [−]−

= [Ω][P/α̂][P/α]N By composition of substitutions
= [Ω][P/α][P/α̂]N Θ ′ ` P type+ and α /∈ UV(Θ ′), so α /∈ FUV(P).

Also P ground, so α̂ /∈ FEV(P).
= [Ω][P/α]N Since α̂ fresh, α̂ /∈ FEV(N)

= [([Ω]P)/α][Ω]N Since context application does not replace
universal variables

‖Θ‖ ` [([Ω]P)/α][Ω]N ≤−M Substituting for [Ω, α̂ = P][α̂/α]N

Θ ′ ` P type+ Above

63

P ground Above
‖Θ ′‖ ` P type+ By Lemma F.1 (Completing context preserves w.f.)
‖Θ‖ ` P type+ By Lemma D.2 (Equality of declarative contexts)

‖Θ‖ ` [Ω]P type+ By Lemma D.5 (Applying a context to a ground type)
‖Θ‖ ` ∀α. [Ω]N ≤−M By ≤±Dforalll

Z ‖Θ‖ ` [Ω]∀α.N ≤−M By definition of [−]−

• Case Θ ` Q ≤+ P a Θ ′ Θ ′ ` [Θ ′]N ≤− M a Θ ′′

Θ ` P → N ≤− Q→M a Θ ′′
≤±Aarrow

Q→M ground Assumption
[Θ](P → N) = P → N Assumption
Θ ` P → N type− Assumption
Θ ` Q→M type− Assumption

We have:

Θ ` Q ≤+ P a Θ ′ Subderivation
Θ ctx Assumption
Q ground Since Q→M ground

[Θ]P = P By definition of [−]−

Therefore by well-formedness:

Θ ′ ctx By Lemma E.2 (Algorithmic subtyping is w.f.)
Θ −→ Θ ′ ′′

We have:

Θ ′ ` [Θ ′]N ≤−M a Θ ′′ Subderivation
Θ ′ ctx Above
M ground Since Q→M ground

[Θ ′][Θ ′]N = [Θ ′]N By Lemma D.6 (Context application is idempotent)

Therefore by well-formedness:

Θ ′ −→ Θ ′′ By Lemma E.2 (Algorithmic subtyping is w.f.)

Applying the induction hypothesis to the first premise:

Θ ′′ −→ Ω Assumption
Θ ′ −→ Ω By Lemma D.3 (Context extension is transitive)
Θ ` Q type+ Inversion (Twfarrow)
Θ ` P type+ ′′

Ω ctx Assumption
‖Θ‖ ` Q ≤+ [Ω]P By i.h. applied to first premise

Applying the induction hypothesis to the second premise:

Θ ′′ −→ Ω Assumption

64

Θ ` N type− Inversion (Twfarrow)
Θ `M type− ′′

Ω ctx Assumption
‖Θ ′‖ ` [Ω][Θ ′]N ≤−M By i.h. applied to second premise

Rework the second declarative judgment:

Θ ′ −→ Ω Above
‖Θ ′‖ ` [Ω]N ≤− [Ω][Θ ′]N By Lemma F.4 (−→ leads to isomorphic types)

≤−M By Lemma B.7 (Declarative subtyping is transitive)
‖Θ‖ ` [Ω]N ≤−M By Lemma D.2 (Equality of declarative contexts)

Finally, apply the declarative rule:

‖Θ‖ ` [Ω]P → [Ω]N ≤−Q→M By ≤±Darrow

Z ‖Θ‖ ` [Ω](P → N) ≤−Q→M By definition of [−]−

• Case Θ ` Q ≤+ P a Θ ′ Θ ′ ` [Θ ′]P ≤+ Q a Θ ′′

Θ ` ↑P ≤− ↑Q a Θ ′′ ≤±Ashift↑
Symmetric to ≤±Ashift↓ case.

G’ Completeness of subtyping

G’.1 Lemmas for completeness

Lemma G.1 (Completion preserves w.f.). If Θ ctx, Θ ` A type±, and Θ −→ Ω, then ‖Θ‖ ` [Ω]A type±.

Proof. Corollary of Lemma F.1 (Completing context preserves w.f.).
By Θ ` A type±, all existential variables in A will appear in Θ. By Θ −→ Ω, these will also all appear in

Ω as ground types. Therefore [Ω]A must be ground. Then:

Θ ` A type± Assumption
Θ ` [Ω]A type± By Lemma E.1 (Applying context to the type preserves w.f.)

[Ω]A ground Above
‖Θ‖ ` [Ω]A type± By Lemma F.1 (Completing context preserves w.f.)

Lemma G.2 (Extension solving guess). If ΘL, α̂, ΘR −→ ΩL, α̂ = Q,ΩR and [ΩL]ΘL ` P ∼=
+ Q, then

ΘL, α̂ = P,ΘR −→ ΩL, α̂ = Q,ΩR.

Proof. By structural induction on ΘR.

• Case ΘR = ·:

65

ΘL, α̂ −→ ΩL, α̂ = Q Assumption
ΘL −→ ΩL Inversion (Csolveguess)

[ΩL]ΘL ` P ∼=
+Q Assumption

Z ΘL, α̂ = P −→ ΩL, α̂ = Q By Csolvedguess

• Case ΘR = Θ ′R, α:

ΘL, α̂, Θ
′
R, α −→ ΩL, α̂ = Q,Ω ′R, α By structure of ΘR, must have instance of

Cuvar

[ΩL]ΘL ` P ∼=
+Q Assumption

ΘL, α̂, Θ
′
R −→ ΩL, α̂ = Q,Ω ′R Inversion (Cuvar)

ΘL, α̂ = P,Θ ′R −→ ΩL, α̂ = Q,Ω ′R By i.h.
Z ΘL, α̂ = P,Θ ′R, α −→ ΩL, α̂ = Q,Ω ′R, α By Cuvar

• Case ΘR = Θ ′R, β̂:

ΘL, α̂, Θ
′
R, β̂ −→ ΩL, α̂ = Q,Ω ′R, β̂ = R By structure of ΘR, must have instance of

Csolveguess

[ΩL]ΘL ` P ∼=
+Q Assumption

ΘL, α̂, Θ
′
R −→ ΩL, α̂ = Q,Ω ′R Inversion (Csolveguess)

ΘL, α̂ = P,Θ ′R −→ ΩL, α̂ = Q,Ω ′R By i.h.
Z ΘL, α̂ = P,Θ ′R, β̂ −→ ΩL, α̂ = Q,Ω ′R, β̂ = R By Csolveguess

• Case ΘR = Θ ′R, β̂ = R:

ΘL, α̂, Θ
′
R, β̂ = R −→ ΩL, α̂ = Q,Ω ′R, β̂ = S By structure of ΘR, must

have instance of
Csolvedguess

[ΩL, α̂ = Q,Ω ′R](ΘL, α̂, Θ
′
R) ` R ∼=

+ S ′′

[ΩL]ΘL ` P ∼=
+Q Assumption

ΘL, α̂, Θ
′
R −→ ΩL, α̂ = Q,Ω ′R Inversion

(Csolveguess)
ΘL, α̂ = P,Θ ′R −→ ΩL, α̂ = Q,Ω ′R By i.h.

[ΩL, α̂ = Q,Ω ′R](ΘL, α̂ = P,Θ ′R) ` R ∼=
+ S Since [−]− ignores

existential variables
Z ΘL, α̂ = P,Θ ′R, β̂ = R −→ ΩL, α̂ = Q,Ω ′R, β̂ = S By Csolvedguess

Lemma G.3 (Context extension substitution size). If:

1. Θ ctx

2. Θ ` A type±

66

3. Θ −→ Ω

4. Ω ctx

then |[Ω][Θ]A|NQ = |[Ω]A|NQ.

Proof. Corollary of Lemma F.4 (−→ leads to isomorphic types) and Lemma B.6 (Isomorphic types are the
same size).

Θ ` A type± Assumption
[Ω]A ground Ω completes all free existential variables in A
Θ −→ Ω ′′

‖Θ‖ ` [Ω][Θ]A ∼=
± [Ω]A By Lemma F.4 (−→ leads to isomorphic types)
Θ ctx Assumption

Θ ` [Θ]A type± By Lemma E.1 (Applying context to the type preserves w.f.)
‖Θ‖ ` [Ω][Θ]A type± By Lemma G.1 (Completion preserves w.f.)

Ω ctx Assumption
‖Θ‖ ` [Ω]A type± By Lemma G.1 (Completion preserves w.f.)

Z |[Ω][Θ]A|NQ = |[Ω]A|NQ By Lemma B.6 (Isomorphic types are the same size)

Lemma G.4 (Context extension ground substitution size). If:

1. Θ ctx

2. Θ ` A type±

3. [Θ]A ground

4. Θ −→ Ω

5. Ω ctx

then |[Θ]A|NQ = |[Ω]A|NQ.

Proof. Corollary of Lemma G.4 (Context extension ground substitution size).

|[Ω][Θ]A|NQ = |[Ω]A|NQ By Lemma B.6 (Isomorphic types are the same size)
Z |[Θ]A|NQ = |[Ω]A|NQ By Lemma D.5 (Applying a context to a ground type)

G’.2 Statement

Theorem G.5 (Completeness of algorithmic subtyping). If Θ ctx, Θ −→ Ω, and Ω ctx, then:

• If ‖Θ‖ ` P ≤+ [Ω]Q, Θ ` P type+, Θ ` Q type+, P ground, and [Θ]Q = Q, then ∃Θ ′ such that
Θ ` P ≤+ Q a Θ ′ and Θ ′ −→ Ω.

• If ‖Θ‖ ` [Ω]N ≤− M, Θ ` M type−, Θ ` N type−, M ground, and [Θ]N = N, then ∃Θ ′ such that
Θ ` N ≤− M a Θ ′ and Θ ′ −→ Ω.

67

Proof. By mutual rule induction on the declarative judgment weighted by the lexicographic ordering of (|P|NQ,
NPQ(P) + NPQ(Q)) in the positive case where we have ‖Θ‖ ` P ≤+ [Ω]Q, and (|M|NQ, NPQ(N) + NPQ(M))
in the negative case where we have ‖Θ‖ ` [Ω]N ≤− M.

Firstly consider the case where B = α̂. Suppose [Ω]α̂ = Q ′:

Θ = ΘL, α̂, ΘR Since Θ ` α̂ type+ and [Θ]α̂ = α̂ by assumption
Ω = ΩL, α̂ = Q ′,ΩR Since [Ω]α̂ = Q ′

ΩL ` Q ′ type+ Inversion on Ω ctx (Cwfsolvedguess)
Q ′ ground ′′

ΘL, α̂, ΘR −→ ΩL, α̂ = Q ′,ΩR Assumption
ΘL −→ ΩL Inversion (must have instance of Csolveguess)
ΘL ` Q ′ type+ By the rules defining −→ , each uvar in ΩL must appear

in ΘL

‖Θ‖ ` P ≤+Q ′ Assumption
P ground ′′

FUV(P) ⊆ UV(ΘL) Since ‖Θ‖ ` P ≤+ Q ′ and ΘL ` Q ′ type+

FEV(P) ⊆ EV(ΘL) FEV(P) = ∅ since P ground
Θ ` P type+ Assumption
ΘL ` P type+ By above three equations

Z ΘL, α̂, ΘR ` P ≤+ α̂ a ΘL, α̂ = P,ΘR By ≤±Ainst

‖Θ‖ ` Q ′ ≤+ P By Lemma B.4 (Symmetry of positive declarative subtyping)
‖Θ‖ ` P ∼=

+Q ′ Since we have both the component judgments
[Ω]ΘL ` P ∼=

+Q ′ Since ‖Θ‖ ` P ∼=
+ Q ′, ΘL ` P type+, and ΘL ` Q ′ type+

[ΩL]ΘL ` P ∼=
+Q ′ Since ΘL −→ ΩL, ΘL ` P type+, and ΘL ` Q ′ type+

ΘL, α̂, ΘR −→ ΩL, α̂ = Q ′,ΩR Above
Z ΘL, α̂ = P,ΘR −→ ΩL, α̂ = Q ′,ΩR By Lemma G.2 (Extension solving guess)

Now consider the cases where B 6= α̂:

• Case ‖Θ‖ ` α type+

‖Θ‖ ` α ≤+ [Ω]α
≤±Drefl

‖Θ‖ ` α type+ Subderivation
α ∈UV([Ω]Θ) Inversion (Twfuvar)
α ∈UV(Θ) By definition of [−]−

Θ = ΘL, α,ΘR Since α ∈ UV(Θ)
Z ΘL, α,ΘR ` α ≤+ α a ΘL, α,ΘR By ≤±Arefl

Z ΘL, α,ΘR −→ Ω Assumption

• Case ‖Θ‖ ` [Ω]M ≤− N ‖Θ‖ ` N ≤− [Ω]M

‖Θ‖ ` ↓N ≤+ [Ω]↓M ≤±Dshift↓
Θ ` ↓N type+ Assumption
Θ ` ↓M type+ Assumption

68

↓N ground Assumption
[Θ]↓M = ↓M Assumption

‖Θ‖ ` [Ω]M ≤−N Subderivation
Θ ctx Assumption

Θ `M type− Inversion (Twfshift↓)
Θ ` N type− ′′

Θ −→ Ω Assumption
Ω ctx ′′

N ground By definition of ground
[Θ]M = M By definition of [−]−

Θ `M ≤−N a Θ ′ By i.h. (the type size of the ground side type in the declarative
judgment has decreased)

Θ ′ −→ Ω ′′

Θ ′ ctx By Lemma E.2 (Algorithmic subtyping is w.f.)
Θ −→ Θ ′ ′′

[Θ ′]M ground ′′

‖Θ‖ ` N ≤− [Ω]M Subderivation
‖Θ ′‖ ` N ≤− [Ω]M By Lemma D.2 (Equality of declarative contexts)

‖Θ ′‖ ` [Θ ′]M ∼=
− [Ω]M By Lemma F.5 (−→ leads to isomorphic types (ground))

Θ ′ ` N type− By Lemma D.4 (Context extension preserves w.f.)
‖Θ ′‖ ` N type− By Lemma F.1 (Completing context preserves w.f.)
Θ ′ `M type− By Lemma D.4 (Context extension preserves w.f.)

‖Θ ′‖ ` [Ω]M type− By Lemma G.1 (Completion preserves w.f.)
Θ ′ ` [Θ ′]M type− By Lemma E.1 (Applying context to the type preserves w.f.)

‖Θ ′‖ ` [Θ ′]M type− By Lemma F.1 (Completing context preserves w.f.)
‖Θ ′‖ ` N ≤− [Θ ′]M By Lemma B.7 (Declarative subtyping is transitive)

‖Θ ′‖ ` [Ω]N ≤− [Θ ′]M By Lemma D.5 (Applying a context to a ground type)
Θ ′ ctx Above

Θ ′ ` N type− Above
Θ ′ ` [Θ ′]M type− Above

Θ ′ −→ Ω Above
Ω ctx Above

[Θ ′]M ground Above
[Θ ′]N = N By Lemma D.5 (Applying a context to a ground type)

|[Θ ′]M|NQ = |[Ω]M|NQ By Lemma G.4 (Context extension ground substitution size)
= |N|NQ By Lemma B.6 (Isomorphic types are the same size)
< |↓N|NQ By definition of |−|NQ

Θ ′ ` N ≤− [Θ ′]M a Θ ′′ By i.h. (the type size of the ground side type in the declarative
judgment has decreased)

Z Θ ′′ −→ Ω ′′

Z Θ ` ↓N ≤+ ↓M a Θ ′′ By ≤±Ashift↓

69

• Case ‖Θ,α‖ ` [Ω]N ≤− M

‖Θ‖ ` [Ω]N ≤− ∀α.M
≤±Dforallr

Θ ctx Assumption
Θ ` N type− Assumption

Θ ` ∀α.M type− Assumption
Θ −→ Ω Assumption

Ω ctx Assumption
∀α.M ground Assumption
[Θ]N = N Assumption

‖Θ,α‖ ` [Ω]N ≤−M Subderivation
‖Θ,α‖ ` [Ω,α]N ≤−M By definition of [−]−

Θ,α ctx By Cwfuvar

Θ,α ` N type− By Lemma A.2 (Term well-formedness weakening)
Θ,α `M type− Inversion (Twfforall)
Θ,α −→ Ω,α By Cuvar

Ω,α ctx By Cwfuvar

M ground By definition of ground
[Θ,α]N = N By definition of [−]−

Θ,α ` N ≤−M a Θ ′′ By i.h. (the type size of the ground side type in the declarative
judgment is the same and the total number of prenex
quantifiers has decreased by 1)

Θ ′′ −→ Ω,α ′′

Θ ′′ = Θ ′, α Inversion (Cuvar)
Z Θ ′ −→ Ω ′′

Θ,α ` N ≤−M a Θ ′, α Substituting for Θ ′′

Z Θ ` N ≤− ∀α.M a Θ ′ By ≤±Aforallr

• Case ‖Θ‖ ` P type+ ‖Θ‖ ` [Ω][P/α]N ≤− M ′

‖Θ‖ ` [Ω]∀α.N ≤− M ′
≤±Dforalll

Proof by induction on the number of prenex universal quantifiers in M ′:

– Case n = 0 (base case). Let M =M ′:

Θ ctx Assumption
Θ −→ Ω Assumption

Ω ctx Assumption
‖Θ‖ ` P type+ Subderivation
Θ ` P type+ Since P ground, this reduces to

FUV(P) ⊆ UV(Θ), which holds since
[−]− preserves uvars and FUV(P) ⊆ [Ω]Θ

(the latter holding by ‖Θ‖ ` P type+).

Θ ` ∀α.N type− Assumption

70

Θ,α ` N type− Inversion (Twfforall)
Θ `M type− Assumption

[Θ]∀α.N = ∀α.N Assumption
[Θ]N = N By definition of [−]−

‖Θ‖ ` [Ω][P/α]N ≤−M Subderivation
[Ω, α̂ = P]Θ, α̂ `
[Ω, α̂ = P][α̂/α]N ≤−M Where α̂ is fresh

Θ, α̂ ctx By Cwfunsolvedguess

Θ, α̂ ` [α̂/α]N type− Each application of Twfuvar involving α
becomes an application of Twfguess

involving α̂, and α̂ ∈ EV(Θ, α̂)
Θ, α̂ `M type− By Lemma A.2 (Term well-formedness weakening)
Θ, α̂ −→ Ω, α̂ = P By Csolveguess

Ω, α̂ = P ctx By Cwfsolvedguess and
Lemma D.4 (Context extension preserves w.f.)

M ground Assumption
[Θ, α̂][α̂/α]N = [α̂/α]N Θ, α̂ can not solve α̂ since Θ, α̂ ctx, and [Θ]N = N

Θ, α̂ ` [α̂/α]N ≤−M a Θ ′′ By completeness i.h. (the type size of the ground
side type in the declarative judgment is the same,
but the total number of prenex quantifiers has
decreased by 1)

Θ ′′ −→ Ω, α̂ = P ′′

By inversion on Θ ′′ −→ Ω, α̂ = P, have Θ ′ −→ Ω and one of the following cases:

Case Θ ′′ = Θ ′, α̂ = Q and ‖Θ ′‖ ` Q ∼=
+ P:

Θ, α̂ ` [α̂/α]N ≤−M a Θ ′, α̂ = Q Substituting for Θ ′′

Z Θ ` ∀α.N ≤−M a Θ ′ By ≤±Aforalll

Z Θ ′ −→ Ω Above

Case Θ ′′ = Θ ′, α̂ and α /∈ FUV(N):

Θ, α̂ ` [α̂/α]N ≤−M a Θ ′, α̂ = × Where × represents “not solved”
Z Θ ` ∀α.N ≤−M a Θ ′ By ≤±Aforalll

Z Θ ′ −→ Ω Above

– CaseM ′ has n+1 prenex universal quantifiers, i.e.M ′ = ∀β.M whereM has n prenex universal
quantifiers:

‖Θ,β‖ ` [Ω]∀α.N ≤−M Inversion (≤±Dforallr)
‖Θ,β‖ ` [Ω,β]∀α.N ≤−M By definition of [−]−

Θ,β ctx By Cwfuvar

Θ,β ` ∀α.N type− By Lemma A.2 (Term well-formedness weakening)
Θ,β `M type− Inversion (Twfforall)
Θ,β −→ Ω,β By Cuvar

Ω,β ctx By Cwfuvar

M ground By definition of ground

71

[Θ,β]∀α.N = ∀α.N By definition of [−]−

Θ,β ` ∀α.N ≤−M a Θ ′′ By i.h. of induction over prenex universal quantifiers
Θ ′′ −→ Ω,β ′′

Θ ′′ = Θ ′, β Inversion (Cuvar)
Z Θ ′ −→ Ω ′′

Θ,β ` ∀α.N ≤−M a Θ ′, β Substituting for Θ ′′

Z Θ ` ∀α.N ≤− ∀β.M a Θ ′ By ≤±Aforallr

• Case ‖Θ‖ ` Q ≤+ [Ω]P ‖Θ‖ ` [Ω]N ≤− M

‖Θ‖ ` [Ω](P → N) ≤− (Q→M)
≤±Darrow

Q→M ground Assumption
[Θ](P → N) = (P → N) Assumption
Θ ` P → N type+ Assumption
Θ ` Q→M type+ Assumption

‖Θ‖ ` Q ≤+ [Ω]P Subderivation
Θ ctx Assumption

Θ ` Q type+ Inversion (Twfarrow)
Θ ` P type+ ′′

Θ −→ Ω Assumption
Ω ctx Assumption
Q ground By definition of ground

[Θ]P = P By definition of [−]−

Θ ` Q ≤+ P a Θ ′ By i.h. (the type size of the ground side type of the
declarative judgment has decreased)

Θ ′ −→ Ω ′′

Θ −→ Θ ′ By Lemma D.2 (Equality of declarative contexts)
Θ ′ ctx ′′

‖Θ‖ ` [Ω]N ≤−M Subderivation
‖Θ ′‖ ` [Ω]N ≤−M By Lemma D.2 (Equality of declarative contexts)

Θ ′ ` N type− By inversion (Twfarrow) and
Lemma D.4 (Context extension preserves w.f.)

‖Θ ′‖ ` [Ω][Θ ′]N ∼=
− [Ω]N By Lemma F.4 (−→ leads to isomorphic types)

Θ ′ ` [Θ ′]N type− By Lemma E.1 (Applying context to the type preserves w.f.)
‖Θ ′‖ ` [Ω][Θ ′]N type− By Lemma G.1 (Completion preserves w.f.)
‖Θ ′‖ ` [Ω]N type− By Lemma G.1 (Completion preserves w.f.)

Θ `M type− Inversion (Twfarrow)
Θ ′ `M type− By Lemma D.4 (Context extension preserves w.f.)

‖Θ ′‖ `M type− By Lemma F.1 (Completing context preserves w.f.)

‖Θ ′‖ ` [Ω][Θ ′]N ≤−M By Lemma B.7 (Declarative subtyping is transitive)
Θ ′ ctx Above

Θ ′ ` [Θ ′]N type− Above
Θ ′ `M type− Above

72

Θ ′ −→ Ω Above
Ω ctx Above
M ground Since Q→M ground

[Θ ′][Θ ′]N = [Θ ′]N By Lemma D.6 (Context application is idempotent)
Θ ′ ` [Θ ′]N ≤−M a Θ ′′ By i.h. (the type size of the ground side type of the

declarative judgment has decreased)
Z Θ ′′ −→ Ω ′′

Z Θ ` P → N ≤−Q→M a Θ ′′ By ≤±Aarrow

• Case ‖Θ‖ ` Q ≤+ [Ω]P ‖Θ‖ ` [Ω]P ≤+ Q

‖Θ‖ ` [Ω]↑P ≤− ↑Q ≤±Dshift↑
Θ ` ↑P type− Assumption
Θ ` ↑Q type− Assumption↑Q ground Assumption
[Θ]↑P = ↑P Assumption

‖Θ‖ ` Q ≤+ [Ω]P Subderivation
Θ ctx Assumption

Θ ` Q type+ Since Θ ` ↑Q type+

Θ ` P type+ Since Θ ` ↑P type+

Θ −→ Ω Assumption
Ω ctx Assumption
Q ground By definition of ground

[Θ]P = P By definition of [−]−

Θ ` Q ≤+ P a Θ ′ By i.h.
Θ ′ −→ Ω ′′

Θ ′ ctx By Lemma E.2 (Algorithmic subtyping is w.f.)
Θ −→ Θ ′ ′′

[Θ ′]P ground ′′

‖Θ‖ ` [Ω]P ≤+Q Subderivation
‖Θ ′‖ ` [Ω]P ≤+Q By Lemma D.2 (Equality of declarative contexts)

Θ ′ ` P type+ By Lemma D.4 (Context extension preserves w.f.)
‖Θ ′‖ ` [Θ ′]P ∼=

+ [Ω]P By Lemma F.5 (−→ leads to isomorphic types (ground))

Θ ′ ` [Θ ′]P type+ By Lemma E.1 (Applying context to the type preserves w.f.)
‖Θ ′‖ ` [Θ ′]P type+ By Lemma F.1 (Completing context preserves w.f.)
‖Θ ′‖ ` [Ω]P type+ By Lemma G.1 (Completion preserves w.f.)

Θ ′ ` Q type+ By Lemma D.4 (Context extension preserves w.f.)
‖Θ ′‖ ` Q type+ By Lemma F.1 (Completing context preserves w.f.)

‖Θ ′‖ ` [Θ ′]P ≤+Q By Lemma B.7 (Declarative subtyping is transitive)

‖Θ ′‖ ` [Θ ′]P ≤+ [Ω]Q By Lemma D.5 (Applying a context to a ground type)
Θ ′ ctx Above

Θ ′ ` [Θ ′]P type+ By Lemma E.1 (Applying context to the type preserves w.f.)
Θ ′ ` Q type+ By Lemma D.4 (Context extension preserves w.f.)

73

Θ ′ −→ Ω Above
Ω ctx Above

[Θ ′]P ground Above
[Θ ′]Q = Q By Lemma D.5 (Applying a context to a ground type)

|[Θ ′]P|NQ = |[Ω]P|NQ By Lemma G.4 (Context extension ground substitution size)
= |[Ω]Q|NQ By Lemma B.6 (Isomorphic types are the same size)
< |[Ω]↑Q|NQ By definition of |−|NQ

Θ ′ ` [Θ ′]P ≤+Q a Θ ′′ By i.h. (the type size of the ground side type of the declarative
judgment has decreased)

Z Θ ′′ −→ Ω ′′

Z Θ ` ↑P ≤− ↑Q a Θ ′′ By ≤±Ashift↑

H’ Determinism of subtyping

Lemma H.1 (Algorithmic subtyping is deterministic).

• If Θ ` P ≤+ Q a Θ ′1 and Θ ` P ≤+ Q a Θ ′2, then Θ ′1 = Θ ′2.

• If Θ ` N ≤− M a Θ ′1 and Θ ` N ≤− M a Θ ′2, then Θ ′1 = Θ ′2.

Proof. By rule induction on the first hypothesis.

• Case

ΘL, α,ΘR ` α ≤+ α a ΘL, α,ΘR

≤±Arefl

ΘL, α,ΘR ` α ≤+ α a ΘL, α,ΘR Assumption
ΘL, α,ΘR ` α ≤+ α a Θ ′2 Assumption

Z ΘL, α,ΘR = Θ ′2 By the structure of α, the instantiation above
is the only possible instantiation of ≤+

• Case Θ ′ ` P type+ P ground
ΘL, α̂, ΘR ` P ≤+ α̂ a ΘL, α̂ = P,ΘR

≤±Ainst

ΘL, α̂, ΘR ` P ≤+ α̂ a ΘL, α̂ = P,ΘR Assumption
ΘL, α̂, ΘR ` P ≤+ α̂ a Θ ′2 Assumption

Z ΘL, α̂ = P,ΘR = Θ ′2 By the structure of α̂, the instantiation above
is the only possible instantiation of ≤+

74

• Case Θ `M ≤− N a Θ ′ Θ ′ ` N ≤− [Θ ′]M a Θ ′′

Θ ` ↓N ≤+ ↓M a Θ ′′ ≤±Ashift↓
Θ ` ↓N ≤+ ↓M a Θ ′′ Assumption
Θ ` ↓N ≤+ ↓M a Θ ′′2 Assumption

By the structure of ↓N, the derivation of the second hypothesis must end with an application of the≤±Ashift↓
rule.

Θ `M ≤−N a Θ ′ Subderivation
Θ `M ≤−N a Θ ′2 Subderivation

Θ ′ = Θ ′2 By i.h.

Θ ′ ` N ≤− [Θ ′]M a Θ ′′ Subderivation
Θ ′2 ` N ≤− [Θ ′2]M a Θ ′′2 Subderivation
Θ ′ ` N ≤− [Θ ′]M a Θ ′′2 Using Θ ′ = Θ ′2

Z Θ ′′ = Θ ′′2 By i.h.

• Case Θ, α̂ ` [α̂/α]N ≤− M a Θ ′, α̂ [= P] M 6= ∀β.M ′

Θ ` ∀α.N ≤− M a Θ ′
≤±Aforalll

Θ ` ∀α.N ≤−M a Θ ′ Assumption
Θ ` ∀α.N ≤−M a Θ ′2 Assumption

By the structure of ∀α.N, and since M 6= ∀β.M ′, the derivation of the second hypothesis must conclude
with an application of ≤±Aforalll.

Θ, α̂ ` [α̂/α]N ≤−M a Θ ′, α̂ [= P] Subderivation
Θ, α̂2 ` [α̂2/α]N ≤−M a Θ ′2, α̂2 [= P2] Subderivation
Θ, α̂ ` [α̂/α]N ≤−M a Θ ′2, α̂ [= P2] Renaming the free existential variable

Θ ′, α̂[= P] = Θ ′2, α̂ [= P2] By i.h.
Z Θ ′, α̂[= P] = Θ ′2, α̂2 [= P2] Substituting back the original name (α̂ = α̂2)

• Case Θ,α ` N ≤− M a Θ ′, α
Θ ` N ≤− ∀α.M a Θ ′

≤±Aforallr

Θ ` N ≤− ∀α.M a Θ ′ Assumption
Θ ` N ≤− ∀α.M a Θ ′2 Assumption

By the structure of ∀α.M, the derivation of the second hypothesis must conclude with an application of
≤±Aforallr.

Θ,α ` N ≤−M a Θ ′, α Subderivation
Θ,α ` N ≤−M a Θ ′2, α Subderivation

Θ ′, α = Θ ′2, α By i.h.
Z Θ ′ = Θ ′2 By above

75

• Case Θ ` Q ≤+ P a Θ ′ Θ ′ ` [Θ ′]N ≤− M a Θ ′′

Θ ` P → N ≤− Q→M a Θ ′′
≤±Aarrow

Θ ` P → N ≤−Q→M a Θ ′′ Assumption
Θ ` P → N ≤−Q→M a Θ ′′2 Assumption

By the structure of P → N and Q → M, the derivation of the second hypothesis must conclude with an
application of ≤±Aarrow.

Θ ` Q ≤+ P a Θ ′ Subderivation
Θ ` Q ≤+ P a Θ ′2 Subderivation

Θ ′ = Θ ′2 By i.h.

Θ ′ ` [Θ ′]N ≤−M a Θ ′′ Subderivation
Θ ′2 ` [Θ ′]N ≤−M a Θ ′′2 Subderivation
Θ ′ ` [Θ ′]N ≤−M a Θ ′′2 Using Θ ′ = Θ ′2

Z Θ ′′ = Θ ′′2 By i.h.

• Case Θ ` Q ≤+ P a Θ ′ Θ ′ ` [Θ ′]P ≤+ Q a Θ ′′

Θ ` ↑P ≤− ↑Q a Θ ′′ ≤±Ashift↑
Θ ` ↑P ≤− ↑Q a Θ ′′ Assumption
Θ ` ↑P ≤− ↑Q a Θ ′′2 Assumption

By the structure of ↑P and ↑Q, the derivation of the second hypothesis must conclude with an application of
≤±Ashift↑.

Θ ` Q ≤+ P a Θ ′ Subderivation
Θ ` Q ≤+ P a Θ ′2 Subderivation

Θ ′ = Θ ′2 By i.h.

Θ ′ ` [Θ ′]P ≤+Q a Θ ′′ Subderivation
Θ ′2 ` [Θ ′2]P ≤+Q a Θ ′′2 Subderivation
Θ ′ ` [Θ ′]P ≤−Q a Θ ′′2 Using Θ ′ = Θ ′2

Z Θ ′′ = Θ ′′2 By i.h.

I’ Decidability of subtyping

I’.1 Lemmas for decidability

Lemma I.1 (Completed non-ground size bounded by ground size).

• If Θ ` P ≤+ Q a Θ ′, Θ ctx, P ground, and [Θ]Q = Q, then |[Θ ′]Q|NQ ≤ |P|NQ.

• If Θ ` N ≤− M a Θ ′, Θ ctx, M ground, and [Θ]N = N, then |[Θ ′]N|NQ ≤ |M|NQ.

76

Proof. Proof sketch by rule induction on algorithmic subtyping judgment. The justification here for using
the i.h. omits the reasoning for why the premises of well-formedness must hold for the subderivations if we
know that they hold for the conclusion. This reasoning should be identical to that in Lemma E.2 (Algorithmic
subtyping is w.f.).

• Case

ΘL, α,ΘR ` α ≤+ α a ΘL, α,ΘR

≤±Arefl

[ΘL, α,ΘR]α = α By definition of [−]−

Z |[ΘL, α,ΘR]α|NQ ≤ |α|NQ Since the types are equal

• Case ΘL ` P type+ P ground
ΘL, α̂, ΘR ` P ≤+ α̂ a ΘL, α̂ = P,ΘR

≤±Ainst

[ΘL, α̂ = P,ΘR]α̂ = P By definition of [−]−

Z |[ΘL, α̂ = P,ΘR]α̂|NQ ≤ |P|NQ Since the types are equal

• Case Θ `M ≤− N a Θ ′ Θ ′ ` N ≤− [Θ ′]M a Θ ′′

Θ ` ↓N ≤+ ↓M a Θ ′′ ≤±Ashift↓
[Θ ′]M ground By well-formedness on the first premise

Θ ′ ctx ′′

Θ ′ −→ Θ ′′ By well-formedness on the first and second premises
Θ ′′ ctx ′′

Θ ′ ctx Above
[Θ ′]M ground Above
Θ ′ −→ Θ ′′ Above

Θ ′′ ctx Above
|[Θ ′]M|NQ = |[Θ ′′]M|NQ By Lemma G.4 (Context extension ground substitution size)

Θ `M ≤−N a Θ ′ Subderivation
|[Θ ′′]M|NQ ≤ |[Θ ′]M|NQ Since the sizes are equal

≤ |N|NQ By i.h.
Z |[Θ ′′]↓M|NQ ≤ |↓N|NQ By definition of |−|NQ

• Case Θ,α ` N ≤− M a Θ ′, α
Θ ` N ≤− ∀α.M a Θ ′

≤±Aforallr

Θ,α ` N ≤−M a Θ ′, α Subderivation
|[Θ ′, α]N|NQ ≤ |M|NQ By i.h.

[Θ ′, α]N = [Θ ′]N By definition of [−]−

77

|M|NQ = |∀α.M|NQ By definition of |−|NQ

Z |[Θ ′]N|NQ ≤ |∀α.M|NQ Substituting above

• Case Θ, α̂ ` [α̂/α]N ≤− M a Θ ′, α̂ [= P] M 6= ∀α.M ′

Θ ` ∀α.N ≤− M a Θ ′
≤±Aforalll

Θ, α̂ ` [α̂/α]N ≤−M a Θ ′, α̂ [= P] Subderivation
|[Θ ′, α̂ [= P]][α̂/α]N|NQ ≤ |M|NQ By i.h.

Case α /∈ FUV(N):

[Θ ′, α̂ [= P]][α̂/α]N = [Θ ′]N By definition of [−]−

|[Θ ′]N|NQ ≤ |M|NQ Substituting above
Z |[Θ ′]∀α.N|NQ ≤ |M|NQ By definition of |−|NQ

Case α ∈ FUV(N):

Θ ′, α̂ [= P] ctx By Lemma E.2 (Algorithmic subtyping is w.f.)
[Θ ′, α̂ [= P]][α̂/α]N ground ′′

(Θ ′, α̂ [= P]) = (Θ ′, α̂ = P) α ∈ FUV(N) so α̂ ∈ FEV([α̂/α]N). Since α̂ is
not ground, the context must solve α̂ to make
[Θ ′, α̂ [= P]][α̂/α]N ground.

P ground Inversion (Cwfsolvedguess)
[Θ ′, α̂ = P][α̂/α]N = [Θ ′][P/α̂][α̂/α]N By definition of [−]−

= [Θ ′][P/α]N By definition of [−]−

= [[Θ ′]P/α][Θ ′]N Since the type being replaced is a universal variable
= [P/α][Θ ′]N Since P is ground

|[Θ ′]∀α.N|NQ = |[Θ ′]N|NQ By definition of |−|NQ

≤ |[P/α][Θ ′]N|NQ The additional substitution cannot decrease
the size of the type

= |[Θ ′, α̂ = P][α̂/α]N|NQ Above
≤ |M|NQ Above

Z |[Θ ′]∀α.N|NQ ≤ |M|NQ By transitivity of ≤

• Case Θ ` Q ≤+ P a Θ ′ Θ ′ ` [Θ ′]N ≤− M a Θ ′′

Θ ` P → N ≤− Q→M a Θ ′′
≤±Aarrow

Θ ` Q ≤+ P a Θ ′ Subderivation
|[Θ ′]P|NQ ≤ |Q|NQ By i.h.

[Θ ′]P ground By w.f. applied to first subderivation
Θ ′ −→ Θ ′′ By w.f. applied to second subderivation

|[Θ ′]P|NQ = |[Θ ′′]P|NQ By Lemma G.4 (Context extension ground substitution size)

Θ ` [Θ ′]N ≤−M a Θ ′′ Subderivation
|[Θ ′′][Θ ′]N|NQ ≤ |M|NQ By i.h.

78

|[Θ ′′][Θ ′]N|NQ = |[Θ ′′]N|NQ By Lemma G.3 (Context extension substitution size)

|[Θ ′′](P → N)|NQ = |[Θ ′′]P|NQ + |[Θ ′′]N|NQ + 1 By definition of |−|NQ

= |[Θ ′]P|NQ + |[Θ ′′][Θ ′]N|NQ + 1 Substituting above
≤ |Q|NQ + |M|NQ + 1 Using above inequalities

Z |[Θ ′′](P → N)|NQ ≤ |Q→M|NQ By definition of |−|NQ

• Case Θ ` Q ≤+ P a Θ ′ Θ ′ ` [Θ ′]P ≤+ Q a Θ ′′

Θ ` ↑P ≤− ↑Q a Θ ′′ ≤±Ashift↑
Symmetric to ≤±Ashift↓ case.

I’.2 Statement

Lemma I.2 (Decidability of algorithmic subtyping). There exists a total order @ on well-formed algorithmic
subtyping judgments such that for each derivation with subtyping judgment premises Ai and conclusion B, each
Ai compares less than B, i.e. ∀i. Ai @ B.

Proof. The ordering is the same lexicographic ordering we used earlier in Lemma B.7 (Declarative subtyping
is transitive) and Theorem G.5 (Completeness of algorithmic subtyping):

• (|P|NQ ,NPQ(P) + NPQ(Q)) for positive judgments Θ ` P ≤+ Q a Θ ′

• (|M|NQ ,NPQ(M) + NPQ(N)) for negative judgments Θ ` N ≤− M a Θ ′

In this ordering, NPQ(A) is the number of prenex universal quantifiers in the type A and |A|NQ is the size
of the algorithmic type A defined in Lemma I.1 (Completed non-ground size bounded by ground size) (N.B.
universal quantifiers do not contribute to this size).

Sketch of this proof: We will prove by rule induction that each subderivation compares less than each
conclusion for each derivation of the algorithmic subtyping judgment. We will assume the following ad-
ditional statements about the judgment being proved in the rule induction (the same assumptions used in
Lemma E.2 (Algorithmic subtyping is w.f.)):

• For positive subderivations
Θ ` P ≤+ Q a Θ ′:

1. Θ ctx
2. P ground
3. [Θ]Q = Q

• For negative subderivations
Θ ` N ≤− M a Θ ′:

1. Θ ctx
2. M ground
3. [Θ]N = N

The subtyping algorithm should first check that these well-formedness assumptions hold for the judgment
in question. By the same argument as used in Lemma E.2 (Algorithmic subtyping is w.f.), we can show that
they are preserved by the algorithmic subtyping rules from conclusion to subderivations.

• Checking the well-formedness of a type is decidable:

– Typing contexts are finite, so checking UV and EV is decidable.

– There is exactly one type well-formedness rule to apply for each type.

– The application of each rule reduces the natural size of the type (same as | |NQ except universal
quantification contributes to this size).

79

• Checking whether a type is ground is decidable, since types are finite.

• Checking context well-formedness is decidable.

– Checking type well-formedness is decidable.

– Checking whether a type is ground is decidable.

– There is exactly one rule to apply for each context.

– The application of each rule for each non-empty context reduces the number of items in the
context by 1.

• Applying a context as a substitution to a type is decidable since each rule decreases the lexicographic
order (number of free existential variables, number of items in the context). This follows from the
requirement that solutions to existential variables are ground.

The subtyping algorithm should then proceed to try and apply algorithmic subtyping rules based on the
structure of the types until there are no more subderivations to prove. The structure of the types dictate a
single rule to apply at each stage. We now sketch a proof that each derivation of an algorithmic subtyping
judgment is finite. As with Lemma I.1 (Completed non-ground size bounded by ground size), we skip
justifications for why the same assumptions used in Lemma E.2 (Algorithmic subtyping is w.f.) continue to
hold.

The key idea is that at each step in the proof, the subderivation either fails or the algorithm determines
that it is derivable. If the first subderivation fails, the algorithm should terminate in a failure state, and
therefore we do not need to prove anything about the second subderivation. This allows us to use the first
subderivations of the shift rules in the proof that the second subderivations are smaller than the conclusions.
We have omitted stating this reasoning in each of the proof cases.

• Case

ΘL, α,ΘR ` α ≤+ α a ΘL, α,ΘR

≤±Arefl

No algorithmic subtyping subderivations.

• Case ΘL ` P type+ P ground
ΘL, α̂, ΘR ` P ≤+ α̂ a ΘL, α̂ = P,ΘR

≤±Ainst

No algorithmic subtyping subderivations.

• Case Θ `M ≤− N a Θ ′ Θ ′ ` N ≤− [Θ ′]M a Θ ′′

Θ ` ↓N ≤+ ↓M a Θ ′′ ≤±Ashift↓
|N|NQ = |↓N|NQ − 1 By definition of |−|NQ

< |↓N|NQ

Therefore the first subderivation compares less than the conclusion.

Θ `M ≤−N a Θ ′ Subderivation
|[Θ ′]M|NQ ≤ |N|NQ By Lemma I.1 (Completed non-ground size bounded by ground size)

< |↓N|NQ By definition of |−|NQ

Therefore the second subderivation compares less than the conclusion.

80

• Case Θ,α ` N ≤− M a Θ ′, α
Θ ` N ≤− ∀α.M a Θ ′

≤±Aforallr

|M|NQ = |∀α.M|NQ By definition of |−|NQ

NPQ(M) <NPQ(∀α.M) The LHS has one fewer prenex quantifier
NPQ(N) + NPQ(M) <NPQ(N) + NPQ(∀α.M)

Therefore the subderivation compares less than the conclusion.

• Case Θ, α̂ ` [α̂/α]N ≤− M a Θ ′, α̂ [= P] M 6= ∀α.M ′

Θ ` ∀α.N ≤− M a Θ ′
≤±Aforalll

|M|NQ = |M|NQ

NPQ([α̂/α]N) <NPQ(∀α.N) The LHS has one fewer prenex quantifier

Therefore the subderivation compares less than the conclusion.

• Case Θ ` Q ≤+ P a Θ ′ Θ ′ ` [Θ ′]N ≤− M a Θ ′′

Θ ` P → N ≤− Q→M a Θ ′′
≤±Aarrow

|Q|NQ = |Q→M|NQ − |M|NQ − 1 By definition of |−|NQ

< |Q→M|NQ

Therefore the first subderivation compares less than the conclusion.

|M|NQ = |Q→M|NQ − |Q|NQ − 1 By definition of |−|NQ

< |Q→M|NQ

Therefore the second subderivation compares less than the conclusion.

• Case Θ ` Q ≤+ P a Θ ′ Θ ′ ` [Θ ′]P ≤+ Q a Θ ′′

Θ ` ↑P ≤− ↑Q a Θ ′′ ≤±Ashift↑
|Q|NQ = |↑Q|NQ − 1 By definition of |−|NQ

< |↑Q|NQ

Therefore the first subderivation compares less than the conclusion.

Θ ′ ` Q ≤+ P a Θ ′ Subderivation
|[Θ ′]P|NQ ≤ |Q|NQ By Lemma I.1 (Completed non-ground size bounded by ground size)

< |↑Q|NQ By definition of |−|NQ

81

Therefore the second subderivation compares less than the conclusion.

J’ Isomorphic types

Lemma J.1 (Isomorphic environments type the same terms). If Θ ` Γ ∼= Γ ′, then:

• If Θ; Γ ` v : P then ∃P ′ such that Θ ` P ∼=
− P ′ and Θ; Γ ′ ` v : P ′.

• If Θ; Γ ` t : N then ∃N ′ such that Θ ` N ∼=
− N ′ and Θ; Γ ′ ` t : N ′.

• If Θ; Γ ` s : N�M and Θ ` N ∼=
− N ′, then ∃M ′ such that Θ `M ∼=

− M ′ and Θ; Γ ` s : N ′ �M ′.

Proof. By mutual induction on the checking, synthesis, and spine judgments.
We first define notions of the sizes of terms and spines:

|e| The size of the term e

|s| The size of the spine s

|x| = 1 |{t}| = |t|+ 1

|λx.t| = |t|+ 1 |Λα. t| = |t|+ 1

|return v| = |v|+ 1

|let x : P = f(s); t| = |f|+ |s|+ |t|+ 1 |let x = f(s); t| = |f|+ |s|+ |t|+ 1

|ε| = 1 |s, v| = |s|+ |v|+ 1

We perform the induction using the following metric on judgments:

|J| The size of the judgment J

|Θ; Γ ` v : P a Θ ′| = (|f|, 0)

|Θ; Γ ` t : N a Θ ′| = (|t|, 0)

|Θ; Γ ` t : N�M a Θ ′| = (|t|,NPQ(N))

• Case x : P ∈ Γ
Θ; Γ ` x : P

Dvar

x : P ∈ Γ Premise
Θ ` Γ ∼= Γ ′ Assumption

(1) x : P ′ ∈ Γ ′ Inversion (Eisovar)
Z Θ ` P ∼=

+ P ′ ′′

Z Θ; Γ ′ ` x : P ′ By Dvar and (1) 82

• Case Θ; Γ, x : P ` t : N
Θ; Γ ` λx : P. t : P → N

Dλabs

Θ ` Γ ∼= Γ ′ Assumption
Θ ` P ∼=

+ P By Lemma B.1 (Declarative subtyping is reflexive)
Θ ` Γ, x : P ∼= Γ ′, x : P By Eisovar

Θ; Γ, x : P ` t : N Subderivation
Θ ` N ∼=

−N ′ By i.h. (term size has decreased)
Θ; Γ ′, x : P ` t : N ′ ′′

Z Θ ` P → N ∼=
− P → N ′ By ≤±Darrow

Z Θ; Γ ′ ` λx : P. t : P → N ′ By Dλabs

• Case Θ,α; Γ ` t : N
Θ; Γ ` Λα. t : ∀α.N

Dgen

Θ ` Γ ∼= Γ ′ Assumption
Θ,α; Γ ` t : N Subderivation
Θ ` N ∼=

−N ′ By i.h. (term size has decreased)
Θ,α; Γ ′ ` t : N ′ ′′

Z Θ ` ∀α.N ∼=
+ ∀α.N ′ By ≤±Dforalll (using P = α) and ≤±Dforallr

Z Θ; Γ ′ ` Λα. t : ∀α.N ′ By Dgen

• Case Θ; Γ ` t : N
Θ; Γ ` {t} : ↓N Dthunk

Θ ` Γ ∼= Γ ′ Assumption
Θ; Γ ` t : N Subderivation
Θ ` N ∼=

− N ′ By i.h. (term size has decreased)
Θ; Γ ′ ` t : N ′ ′′

Z Θ ` ↓N ∼=
− ↓N ′ By ≤±Dshift↓

Z Θ; Γ ′ ` {t} : ↓N ′ By Dthunk

• Case Θ; Γ ` v : P
Θ; Γ ` return v : ↑P Dreturn

Θ ` Γ ∼= Γ ′ Assumption
Θ; Γ ` v : P Subderivation
Θ ` P ∼=

+ P ′ By i.h. (term size has decreased)
Θ; Γ ′ ` v : P ′ ′′

83

Z Θ ` ↑P ∼=
− ↑P ′ By ≤±Dshift↑

Z Θ; Γ ′ ` return v : ↑P ′ By Dreturn

• Case Θ; Γ ` v : ↓M Θ; Γ ` s :M� ↑Q Θ ` ↑P ≤− ↑Q Θ; Γ, x : P ` t : N
Θ; Γ ` let x : P = v(s); t : N

Dambiguouslet

Θ ` Γ ∼= Γ ′ Assumption

Θ; Γ ` v : ↓M ′ Subderivation
Θ ` ↓M ∼=

+ ↓M ′ By i.h. (term size has decreased)
(1) Θ; Γ ′ ` v : ↓M ′ ′′

Θ; Γ ` s :M� ↑Q Subderivation
Θ `M ∼=

−M ′ Inversion (≤±Dshift↓)
Θ ` ↑Q ∼=

− ↑Q ′ By i.h. (term size has decreased)
(2) Θ; Γ ′ ` s :M ′ � ↑Q ′ ′′

Θ ` ↑P ≤− ↑Q Premise
(3) Θ ` ↑P ≤− ↑Q ′ By Lemma B.7 (Declarative subtyping is transitive)

Θ ` Γ, x : P ∼= Γ ′, x : P By Eisovar

Θ; Γ, x : P ` t : N Subderivation
Z Θ ` N ∼=

− N ′ By i.h. (term size has decreased)
(4) Θ; Γ ′, x : P ` t : N ′ ′′

Z Θ; Γ ′ ` let x : P = v(s); t : N ′ By Dambiguouslet and (1–4)

• Case Θ; Γ ` v : ↓M
Θ; Γ ` s :M� ↑Q Θ; Γ, x : Q ` t : N ∀P. if Θ; Γ ` s :M� ↑P then Θ ` Q ∼=

+ P

Θ; Γ ` let x = v(s); t : N
Dunambiguouslet

Θ ` Γ ∼= Γ ′ Assumption

Θ; Γ ` v : ↓M Subderivation
Θ ` ↓M ∼=

+ ↓M ′ By i.h. (term size has decreased)
(1) Θ; Γ ′ ` v : ↓M ′ ′′

Θ; Γ ` s :M� ↑Q Subderivation
Θ `M ∼=

−M ′ Inversion (≤±Dshift↓)
Θ ` ↑Q ∼=

− ↑Q ′ By i.h. (term size has decreased)
(2) Θ; Γ ′ ` s :M ′ � ↑Q ′ ′′

Θ ` Q ∼=
+Q ′ Inversion (≤±Dshift↑)

Θ ` Γ, x : Q ∼= Γ ′, x : Q ′ By Eisovar

Z Θ ` N ∼=
− N ′ By i.h. (term size has decreased)

(3) Θ; Γ ′, x : Q ′ ` t : N ′ ′′

84

To show the final premise of the Dunambiguouslet rule, let P be arbitrary and assume Θ; Γ ′ ` s : M ′ � ↑P.
Now show that Θ ` Q ′ ∼=− P:

Θ; Γ ′ ` s :M ′ � ↑P Assumption
Θ ` Γ ∼= Γ ′ Above
Θ `M ∼=

− M ′ Above
Θ; Γ ` s :M� ↑P ′ By i.h. (term size has decreased)
Θ ` ↑P ∼=

− ↑P ′ ′′

Θ ` P ∼=
− P ′ Inversion (≤±Dshift↑)

Θ ` Q ∼=
− P ′ Applying subderivation

Θ ` Q ∼=
− Q ′ Above

Θ ` Q ′ ∼=− P By Lemma B.7 (Declarative subtyping is transitive)

We have now shown the final premise of Dunambiguouslet, so apply it to give the required typing judgment:

Z Θ; Γ ′ ` let x : P = v(s); t : N ′ By Dunambiguouslet and (1–3)

• Case

Θ; Γ ` ε : N� N
Dspinenil

Θ ` Γ ∼= Γ ′ Assumption
Z Θ ` N ∼=

− N ′ Assumption
Z Θ; Γ ′ ` ε : N ′ � N ′ By Dspinenil

• Case Θ; Γ ` v : P Θ ` P ≤+ Q Θ; Γ ` s : N�M

Θ; Γ ` v, s : (Q→ N)�M
Dspinecons

Θ ` Γ ∼= Γ ′ Assumption
Θ ` Q→ N ∼=

− T Assumption

By inversion, T = ∀α · · · ∀β.P ′ → N ′. Therefore perform induction over the number of prenex universal
quantifiers, n:

– Case n = 0:

N = Q ′ → N ′ By inversion
Θ ` Q→ N ∼=

− Q ′ → N ′ Assumption
Θ ` Q ∼=

+Q ′ By inversion
Θ ` N ∼=

− N ′ By inversion

Θ ` P ∼=
+ P ′ By outer i.h. (term size has decreased)

(1) Θ; Γ ′ ` v : P ′ ′′

Θ ` P ≤+Q Subderivation

85

(2) Θ ` P ′ ≤+Q ′ By Lemma B.7 (Declarative subtyping is transitive)

Θ; Γ ` s : N�M Subderivation
Z Θ `M ∼=

− M ′ By outer i.h. (term size has decreased)
(3) Θ; Γ ′ ` s : N ′ �M ′ ′′

Z Θ; Γ ′ ` v, s : Q ′ → N ′ �M ′ By Dspinecons and (1–3)

– Case: n = k+ 1

T = ∀α. T ′ By inversion
Θ ` P → N ∼=

+ [P/α]T ′ By inversion (≤±Dforalll, ≤±Dforallr), for Θ ` P type+

Θ; Γ ′ ` v, s : [P/α]T ′ �M ′ By inner i.h.
Z Θ `M ∼=

− M ′ ′′

Θ; Γ ′ ` v, s : (∀α. T ′)�M ′ By Dspinetypeabs

Z Θ; Γ ′ ` v, s : T �M ′ By equality

• Case Θ ` P type+ Θ; Γ ` s : [P/α]N�M

Θ; Γ ` s : (∀α.N)�M
Dspinetypeabs

Θ ` Γ ∼= Γ ′ Assumption
Θ ` ∀α.N ∼=

− N ′′ Assumption

N ′′ = ∀β.N ′ Inversion (≤±Dforalll/ ≤±Dforallr)
Θ ` [P/α]N ∼=

− [R/β]N ′ ′′, for Θ ` R type+

Z Θ `M ∼=
− M ′ By i.h. (term size is the same and the

number of prenex quantifiers has decreased)
Θ; Γ ′ ` s : [R/β]N ′ �M ′ ′′

Θ; Γ ′ ` s : ∀β.N ′ �M ′ By Dspinetypeabs

Z Θ; Γ ′ ` s : N ′′ �M ′ By definition of N ′′

K’ Well-formedness of typing

Lemma K.1 (Well-formedness of restricted contexts). If Θ ctx, Θ ′ ctx, Θ =⇒ Θ ′, then Θ ′ � Θ ctx, Θ −→
Θ ′ � Θ, and Θ ′ � Θ =⇒ Θ ′.

Proof. By rule induction on the Θ =⇒ Θ ′ judgment.

• Case

· =⇒ ·
Wcempty

86

·� · = · By �empty

Z · ctx By Cwfempty

Z · −→ · By Cempty

Z · =⇒ · By Wcempty

• Case Θ =⇒ Θ ′

Θ,α =⇒ Θ ′, α
Wcuvar

Θ,α ctx Assumption
Θ ctx Inversion (Cwfuvar)

Θ ′, α ctx Assumption
Θ ′ ctx Inversion (Cwfuvar)

Θ =⇒ Θ ′ Subderivation

Θ −→ Θ ′ � Θ By i.h.
Θ ′ � Θ ctx ′′

Θ ′ � Θ =⇒ Θ ′ ′′

(Θ ′, α)� (Θ,α) = (Θ ′ � (Θ,α)), α By �uvar

Z (Θ ′ � Θ), α ctx By Cwfuvar

Z Θ,α −→ (Θ ′ � Θ), α By Cuvar

Z (Θ ′ � Θ), α =⇒ Θ ′, α By Wcuvar

• Case Θ =⇒ Θ ′

Θ, α̂ =⇒ Θ ′, α̂
Wcunsolvedguess

Θ, α̂ ctx Assumption
Θ ctx Inversion (Cwfunsolvedguess)

Θ ′, α̂ ctx Assumption
Θ ′ ctx Inversion (Cwfunsolvedguess)

Θ =⇒ Θ ′ Subderivation

Θ ′ � Θ ctx By i.h.
Θ −→ Θ ′ � Θ ′′

Θ ′ � Θ =⇒ Θ ′ ′′

(Θ ′, α̂)� (Θ, α̂) = (Θ ′ � Θ), α̂ By �guessin

Z (Θ ′ � Θ), α̂ ctx By Cwfunsolvedguess

Z Θ, α̂ −→ (Θ ′ � Θ), α̂ By Cunsolvedguess

Z (Θ ′ � Θ), α̂ =⇒ Θ ′, α̂ By Wcunsolvedguess

87

• Case Θ =⇒ Θ ′

Θ, α̂ =⇒ Θ ′, α̂ = P
Wcsolveguess

Θ, α̂ ctx Assumption
Θ ctx Inversion (Cwfunsolvedguess)

Θ ′, α̂ = P ctx Assumption
Θ ′ ctx Inversion (Cwfsolvedguess)

Θ =⇒ Θ ′ Subderivation

Θ ′ � Θ ctx By i.h.
Θ −→ Θ ′ � Θ ′′

Θ ′ � Θ =⇒ Θ ′ ′′

(Θ ′, α̂ = P)� (Θ, α̂) = (Θ ′ � Θ), α̂ = P By �guessin

Z (Θ ′ � Θ), α̂ = P ctx By Cwfsolvedguess

Z Θ, α̂ −→ (Θ ′ � Θ), α̂ = P By Csolveguess

Z (Θ ′ � Θ), α̂ = P =⇒ Θ ′, α̂ = P By Wcsolvedguess

• Case
Θ =⇒ Θ ′ ‖Θ‖ ` P ∼=

+ Q

Θ, α̂ = P =⇒ Θ ′, α̂ = Q
Wcsolvedguess

Θ, α̂ = P ctx Assumption
Θ ctx Inversion (Cwfsolvedguess)

Θ ′, α̂ = Q ctx Assumption
Θ ′ ctx Inversion (Cwfsolvedguess)

Θ =⇒ Θ ′ Subderivation

Θ ′ � Θ ctx By i.h.
Θ −→ Θ ′ � Θ ′′

Θ ′ � Θ =⇒ Θ ′ ′′

(Θ ′, α̂ = Q)� (Θ, α̂ = P) = (Θ ′ � Θ), α̂ = Q By �guessin

Z (Θ ′ � Θ), α̂ = Q ctx By Cwfsolvedguess

‖Θ‖ ` P ∼=
+Q Premise

Z Θ, α̂ = P −→ (Θ ′ � Θ), α̂ = Q By Csolvedguess

Z (Θ ′ � Θ), α̂ = Q =⇒ Θ ′, α̂ = Q By Wcsolvedguess

• Case Θ =⇒ Θ ′

Θ =⇒ Θ ′, α̂
Wcnewunsolvedguess

α̂ [= P] /∈Θ Since α̂ fresh
(Θ ′, α̂)� Θ = Θ ′ � Θ By �guessnotin

88

Θ ctx Assumption
Θ ′, α̂ ctx Assumption
Θ ′ ctx Inversion (Cwfunsolvedguess)

Θ =⇒ Θ ′ Subderivation

Z Θ ′ � Θ ctx By i.h.
Z Θ −→ Θ ′ � Θ ′′

Θ ′ � Θ =⇒ Θ ′ ′′

Z Θ ′ � Θ =⇒ Θ ′, α̂ By Wcnewunsolvedguess

• Case Θ =⇒ Θ ′

Θ =⇒ Θ ′, α̂ = P
Wcnewsolvedguess

α̂ [= Q] /∈Θ Since α̂ fresh
(Θ ′, α̂ = P)� Θ = Θ ′ � Θ By �guessnotin

Θ ctx Assumption
Θ ′, α̂ = P ctx Assumption

Θ ′ ctx Inversion (Cwfsolvedguess)
Θ =⇒ Θ ′ Subderivation

Z Θ ′ � Θ ctx By i.h.
Z Θ −→ Θ ′ � Θ ′′

Θ ′ � Θ =⇒ Θ ′ ′′

Z Θ ′ � Θ =⇒ Θ ′, α̂ = P By Wcnewsolvedguess

Lemma K.2 (Type well-formed with type variable removed). If ΘL, α,ΘR ` T type± and α /∈ FUV(T), then
ΘL, ΘR ` T type±.

Proof. By rule induction over the definition of well-formed types.

• Case β ∈ FUV(ΘL, α,ΘR)

ΘL, α,ΘR ` β type+
Twfuvar

α /∈ FUV(β) Assumption
β 6= α By above

ΘL, α,ΘR ` β type+ Assumption
β ∈ FUV(ΘL, ΘR) By above two statements

Z ΘL, ΘR ` β type+ By Twfuvar

89

• Case α̂ ∈ FEV(ΘL, α,ΘR)

ΘL, α,ΘR ` α̂ type+
Twfguess

ΘL, α,ΘR ` α̂ type+ Assumption
α̂ ∈ FEV(ΘL, ΘR) By above

Z ΘL, ΘR ` α̂ type+ By Twfguess

• Case ΘL, α,ΘR ` N type−

ΘL, α,ΘR ` ↓N type+
Twfshift↓

ΘL, α,ΘR ` N type− Premise
ΘL, ΘR ` N type− By i.h.

Z ΘL, ΘR ` ↓N type+ By Twfshift↓
• Case ΘL, α,ΘR, β ` N type−

ΘL, α,ΘR ` ∀β.N type−
Twfforall

β 6= α β is fresh
ΘL, α,ΘR, β ` N type− Premise
ΘL, ΘR, β ` N type− By i.h.

Z ΘL, ΘR ` ∀β.N type− By Twfforall

• Case ΘL, α,ΘR ` P type+ ΘL, α,ΘR ` N type−

ΘL, α,ΘR ` P → N type−
Twfarrow

ΘL, α,ΘR ` P type+ Premise
ΘL, ΘR ` P type+ By i.h.

ΘL, α,ΘR ` N type− Premise
ΘL, ΘR ` N type− By i.h.

Z ΘL, ΘR ` P → N type− By Twfarrow

• Case ΘL, α,ΘR ` P type+

ΘL, α,ΘR ` ↑P type−
Twfshift↑

ΘL, α,ΘR ` P type+ Premise
ΘL, ΘR ` P type+ By i.h.

Z ΘL, ΘR ` ↑P type− By Twfshift↑

90

Lemma K.3 (Substitution preserves well-formedness of types). If ΘL, α,ΘR ` T type±, then ΘL, α̂, ΘR `
[α̂/α]T type±.

Proof. By rule induction over the definition of well-formed types.

• Case β ∈ FUV(ΘL, β,ΘR)

ΘL, α,ΘR ` α type+
Twfuvar

Take cases on whether β = α

– Case β = α:

ΘL, α,ΘR ` α type+ Assumption
[α̂/α]α = α̂ By definition

ΘL, α̂, ΘR ` α̂ type+ By Twfguess

Z ΘL, α̂, ΘR ` [α̂/α]β type+ By equality

– Case β 6= α:

ΘL, α,ΘR ` β type+ Assumption
[α̂/α]β = β By definition

Therefore, β ∈ FUV(ΘL) or β ∈ FUV(ΘR)

β ∈ FUV(ΘL, α̂, ΘR)

ΘL, α̂, ΘR ` β type+ By Twfuvar

Z ΘL, α̂, ΘR ` [α̂/α]β type+ By equality

• Case α̂ ∈ FEV(ΘL, α,ΘR)

ΘL, α,ΘR ` α̂ type+
Twfguess

ΘL, α,ΘR ` β̂ type+ Assumption
[α̂/α]β̂ = β̂ By definition

Therefore, β̂ ∈ FEV(ΘL) or β̂ ∈ FEV(ΘR)

β̂ ∈ FEV(ΘL, α̂, ΘR)

ΘL, α̂, ΘR ` β̂ type+ By Twfguess

Z ΘL, α̂, ΘR ` [α̂/α]β̂ type+ By equality

91

• Case ΘL, α,ΘR ` N type−

ΘL, α,ΘR ` ↓N type+
Twfshift↓

ΘL, α,ΘR ` ↓N type+ Assumption
ΘL, α,ΘR ` N type− Premise

ΘL, α̂, ΘR ` [α̂/α]N type− By i.h.
ΘL, α̂, ΘR ` ↓[α̂/α]N type+ By Twfshift↓

Z ΘL, α̂, ΘR ` [α̂/α]↓N type+ By definition of substitution

• Case ΘL, α,ΘR, β ` N type−

ΘL, α,ΘR ` ∀β.N type−
Twfforall

β fresh, and therefore β 6= α.

ΘL, α,ΘR ` ∀β.N type− Assumption
ΘL, α, (ΘR, β) ` N type− Premise

ΘL, α̂, (ΘR, β) ` [α̂/α]N type− By i.h.
ΘL, α̂, ΘR ` ∀β.[α̂/α]N type− By Twfforall

Z ΘL, α̂, ΘR ` [α̂/α](∀β.N) type− By definition of substitution

• Case ΘL, α,ΘR ` P type+ ΘL, α,ΘR ` N type−

ΘL, α,ΘR ` P → N type−
Twfarrow

ΘL, α,ΘR ` P → N type− Assumption

ΘL, α,ΘR ` P type+ Assumption
ΘL, α̂, ΘR ` [α̂/α]P type+ By i.h.

ΘL, α,ΘR ` N type− Assumption
ΘL, α̂, ΘR ` [α̂/α]N type− By i.h.

ΘL, α̂, ΘR ` ([α̂/α]P) → ([α̂/α]N) type− By Twfarrow

Z ΘL, α̂, ΘR ` [α̂/α](P → N) type− By definition of substitution

• Case ΘL, α,ΘR ` P type+

ΘL, α,ΘR ` ↑P type−
Twfshift↑

ΘL, α,ΘR ` ↑P type− Assumption
ΘL, α,ΘR ` P type+ Premise

ΘL, α̂, ΘR ` [α̂/α]P type+ By i.h.
ΘL, α̂, ΘR ` ↑[α̂/α]P type− By Twfshift↑

Z ΘL, α̂, ΘR ` [α̂/α]↑P type− By definition of substitution

92

Lemma K.4 (Context extension maintains variables). If Θ −→ Ω, then FUV(Θ) = FUV(Ω) and FEV(Θ) =
FEV(Ω).

Proof. All rules ensure that the left-hand side and right-hand side contexts have the same set of free universal
variables and the same set of existential variables.

Lemma K.5 (Algorithmic typing is w.f.). Given a typing context Θ and typing environment Γ such that Θ ctx
and Θ ` Γ env:

• If Θ; Γ ` v : P a Θ ′, then Θ ′ ctx, Θ −→ Θ ′, Θ ′ ` P type+, and P ground.

• If Θ; Γ ` t : N a Θ ′, then Θ ′ ctx, Θ −→ Θ ′, Θ ′ ` N type−, and N ground.

• If Θ; Γ ` s : N�M a Θ ′, Θ ` N type−, and [Θ]N = N, then Θ ′ ctx, Θ =⇒ Θ ′, Θ ′ ` M type−,
[Θ ′]M =M, and FEV(M) ⊆ FEV(N) ∪ (FEV(Θ ′) \ FEV(Θ)).

Proof. By mutual rule induction over the algorithmic synthesis and spine judgments.

• Case x : P ∈ Γ
Θ; Γ ` x : P a Θ

Avar

Z Θ ctx Assumption
Z Θ −→ Θ By Lemma D.1 (Context extension is reflexive)

Θ ` Γ env Assumption
Z Θ ` P type+ Inversion (Ewfvar)
Z P ground ′′

• Case Θ; Γ, x : P ` t : N a Θ ′

Θ; Γ ` λx : P. t : P → N a Θ ′
Aλabs

Θ ctx Assumption
Θ ` Γ env Assumption

Θ ` P type+ P annotation
P ground ′′

Θ ` Γ, x : P env By Ewfvar

Θ; Γ, x : P ` t : N a Θ ′ Subderivation

Z Θ ′ ctx By i.h.
Z Θ −→ Θ ′ ′′

Θ ′ ` N type− ′′

N ground ′′

Z Θ ′ ` P → N type− By Twfarrow

Z P → N ground By definition of ground

93

• Case Θ,α; Γ ` t : N a Θ ′, α
Θ; Γ ` Λα. t : ∀α.N a Θ ′

Agen

Θ ctx Assumption
Θ,α ctx By Cwfuvar

Θ ` Γ env Assumption
Θ,α ` Γ env By weakening

Θ,α; Γ ` t : N a Θ ′, α Subderivation

Θ ′, α ctx By i.h.
Θ,α −→ Θ ′, α ′′

Θ,α ` N type− ′′

[Θ ′]N ground ′′

Z Θ ′ ctx Inversion (Cwfuvar)
Z Θ −→ Θ ′ Inversion (Cuvar)
Z Θ ` ∀α.N type− By Twfforall

Z [Θ ′](∀α.N) ground By definition of ground

• Case Θ; Γ ` t : N a Θ ′

Θ; Γ ` {t} : ↓N a Θ ′ Athunk

Θ ctx Assumption
Θ ` Γ env Assumption
Θ ` Γ env By Ewfvar

Θ; Γ ` t : N a Θ ′ Subderivation

Z Θ ′ ctx By i.h.
Z Θ −→ Θ ′ ′′

Θ ′ ` N type− ′′

[Θ ′]N ground ′′

Z Θ ′ ` ↓N type− By ≤±Dshift↓
Z [Θ ′]↓N ground By definition of ground

• Case Θ; Γ ` v : P a Θ ′

Θ; Γ ` return v : ↑P a Θ ′ Areturn

Symmetrical to Athunk.

• Case Θ; Γ ` v : ↓M a Θ ′ Θ ′; Γ ` s :M� ↑Q a Θ ′′ Θ ′′ ` P ≤+ Q a Θ ′′′

Θ ′′′ ` [Θ ′′′]Q ≤+ P a Θ(4) Θ(5) = Θ(4) � Θ Θ(5); Γ, x : P ` t : N a Θ(6)

Θ; Γ ` let x : P = v(s); t : N a Θ(6)
Aambiguouslet

94

Apply the induction hypothesis to the first premise:

Θ ctx Assumption
Θ ` Γ env Assumption

Θ; Γ ` v : ↓M a Θ ′ Subderivation
Θ ′ ctx By i.h.

(1) Θ −→ Θ ′ ′′

Θ ′ ` ↓M type+ ′′↓M ground ′′

Apply the induction hypothesis again, this time to the second premise:

Θ ctx Assumption
Θ =⇒ Θ ′ By Lemma C.1 (=⇒ subsumes −→)
Θ ′ ` Γ env By Lemma C.6 (Weak context extension preserves w.f. envs)

Θ ′; Γ ` s :M� ↑Q a Θ ′′ Subderivation
Θ ′ `M type− Inversion (Twfshift↓)

M ground By definition of ground and above
[Θ ′]M = M By Lemma D.5 (Applying a context to a ground type)

(2) Θ ′ =⇒ Θ ′′ By i.h.
Θ ′′ ctx ′′

Θ ′′ ` ↑Q type− ′′

[Θ ′′]↑Q = ↑Q ′′

Now apply the well-formedness of algorithmic subtyping to the third premise:

Θ ′′ ` P ≤+Q a Θ ′′′ Subderivation
Θ ′′ ctx Above
P ground P annotation

[Θ ′′]Q = Q By definition of [−]− and above
Θ ′′′ ctx By Lemma E.2 (Algorithmic subtyping is w.f.)

(3) Θ ′′ −→ Θ ′′′ ′′

[Θ ′′′]Q ground ′′

Apply it again to the fourth premise:

Θ ′′′ ` [Θ ′′′]Q ≤+ P a Θ(4) Subderivation
Θ ′′′ ctx Above

[Θ ′′′]Q ground Above
[Θ ′′′]P = P By Lemma D.5 (Applying a context to a ground type)

Θ(4) ctx By Lemma E.2 (Algorithmic subtyping is w.f.)
(4) Θ ′′′ −→ Θ(4) ′′

Make use of Lemma K.1 (Well-formedness of restricted contexts) in the context of the fifth premise:

Θ =⇒ Θ ′ Applying
Lemma C.1 (=⇒ subsumes −→)
to (1)

Θ ′ =⇒ Θ ′′ Above ((2))
Θ ′′ =⇒ Θ ′′′ Applying

95

Lemma C.1 (=⇒ subsumes −→)
to (3)

Θ ′′′ =⇒ Θ(4) Applying
Lemma C.1 (=⇒ subsumes −→)
to (4)

Θ ctx Above
Θ(4) ctx Above

Θ =⇒ Θ(4) By Lemma C.4 (Weak context extension is transitive)
Θ(5) = Θ(4) � Θ By premise

(5) Θ −→ Θ(5) By Lemma K.1 (Well-formedness of restricted contexts)
Θ(5) ctx ′′

Finally, apply the induction hypothesis to the last premise:

Θ(5) ctx Above
Θ =⇒ Θ(5) By Lemma C.1 (=⇒ subsumes −→)
Θ(5) ` Γ env By Lemma C.6 (Weak context extension preserves w.f. envs)
Θ ` P type+ P is an annotation

Θ(5) ` P type+ By Lemma D.4 (Context extension preserves w.f.)
P ground P is an annotation

Θ(5) ` Γ, x : P env By Ewfvar

Θ(5); Γ, x : P ` t : N a Θ(6) Subderivation
Z Θ(6) ctx By i.h.

(6) Θ(5) −→ Θ(6) ′′

Z Θ(6) ` N type− ′′

Z N ground ′′

Z Θ −→ Θ(6) Applying Lemma D.3 (Context extension is transitive) to (5) and (6)

• Case Θ; Γ ` v : ↓M a Θ ′
Θ ′; Γ ` s :M� ↑Q a Θ ′′ FEV(Q) = ∅ Θ ′′′ = Θ ′′ � Θ Θ ′′′; Γ, x : Q ` t : N a Θ(4)

Θ; Γ ` let x = v(s); t : N a Θ(4)
Aunambiguouslet

First apply the induction hypothesis to the first subderivation:

Θ ctx Assumption
Θ ` Γ env Assumption

Θ; Γ ` v : ↓M a Θ ′ Subderivation

Θ ′ ctx By i.h.
(1) Θ −→ Θ ′ ′′

Θ ′ ` ↓M type+ ′′↓M ground ′′

Now apply the induction hypothesis to the spine subderivation:

Θ ′ ctx Above

96

Θ =⇒ Θ ′ Applying Lemma C.1 (=⇒ subsumes −→) to (1)
Θ ′ ` Γ env By Lemma C.6 (Weak context extension preserves w.f. envs)

Θ ′; Γ ` s :M� ↑Q a Θ ′′ Subderivation
M ground By the definition of ground

Θ ′ `M type− Inversion (Twfshift↓)
[Θ ′]M = M By Lemma D.5 (Applying a context to a ground type)

Θ ′′ ctx By i.h.
Θ ′′ ` ↑Q type− ′′

Θ ′ =⇒ Θ ′′ ′′

Produce a strong context extension judgment using Lemma K.1 (Well-formedness of restricted contexts):

Θ ctx Above
Θ ′′ ctx Above

Θ =⇒ Θ ′′ By Lemma C.4 (Weak context extension is transitive)
Θ ′′′ = Θ ′′ � Θ Premise

(2) Θ −→ Θ ′′′ By Lemma K.1 (Well-formedness of restricted contexts)
Θ ′′′ ctx ′′

Finally, apply the induction hypothesis to the last premise:

Θ =⇒ Θ ′′′ Applying Lemma C.1 (=⇒ subsumes −→) to (2)
Θ ′′′ ` Γ env By Lemma C.6 (Weak context extension preserves w.f. envs)

Θ ′′ ` Q type+ Inversion (Twfshift↑)
Θ ′′′ ` Q type+ By Lemma D.4 (Context extension preserves w.f.)

FEV(Q) = ∅ Premise
Q ground By definition of ground

Θ ′′′ ` Γ, x : Q env By Ewfvar

Θ ′′′ ctx Above
Θ ′′′ ` Γ, x : Q env Above

Θ ′′′; Γ, x : Q ` t : N a Θ(4) Subderivation

Z Θ(4) ctx By i.h.
(3) Θ ′′′ −→ Θ(4) ′′

Z Θ(4) ` N type− ′′

Z N ground ′′

Z Θ −→ Θ(4) Applying Lemma D.3 (Context extension is transitive) to (2) and (3)

• Case

Θ; Γ ` ε : N� N a Θ
Aspinenil

Z Θ ctx Assumption
Z Θ =⇒ Θ By Lemma C.2 (Weak context extension is reflexive)
Z Θ ` N type− Assumption
Z [Θ]N = N Assumption

FEV(N) ⊆ FEV(N) By reflexivity of ⊆

97

Z FEV(N) ⊆ FEV(N) ∪ (FEV(Θ ′) \ FEV(Θ)) By definition of ⊆

• Case Θ; Γ ` v : P a Θ ′ Θ ′ ` P ≤+ [Θ ′]Q a Θ ′′ Θ ′′; Γ ` s : [Θ ′′]N�M a Θ ′′′

Θ; Γ ` v, s : Q→ N�M a Θ ′′′
Aspinecons

Θ ctx Assumption
Θ ` Γ env Assumption

Θ; Γ ` v : P a Θ ′ Subderivation

Θ ′ ctx By i.h.
Θ −→ Θ ′ ′′

Θ ′ ` P type+ ′′

P ground ′′

Θ ′ ` P ≤+Q a Θ ′′ Subderivation
Θ ′ ctx Above
P ground Above

[Θ ′][Θ ′]Q = [Θ ′]Q By Lemma D.6 (Context application is idempotent)
Θ ′′ ctx By Lemma E.2 (Algorithmic subtyping is w.f.)

Θ ′ −→ Θ ′′ ′′

[Θ ′′][Θ ′]Q ground ′′

Θ ′′ ctx Above
Θ −→ Θ ′′ By Lemma B.7 (Declarative subtyping is transitive)
Θ =⇒ Θ ′′ By Lemma C.1 (=⇒ subsumes −→)
Θ ′′ ` Γ env By Lemma C.6 (Weak context extension preserves w.f. envs)

Θ ′′; Γ ` s : [Θ ′′]N� ↑Q a Θ ′′′ Subderivation
Θ ` N type− Inversion (Twfarrow)
Θ ′′ ` N type− By Lemma D.4 (Context extension preserves w.f.)

Θ ′′ ` [Θ ′′]N type− By Lemma E.1 (Applying context to the type preserves w.f.)
[Θ ′′][Θ ′′]N = [Θ ′′]N By Lemma D.6 (Context application is idempotent)

Z Θ ′′′ ctx By i.h.
Θ ′′ =⇒ Θ ′′′ ′′

Z Θ ′′′ `M type− ′′

Z [Θ ′′′]M = M ′′

FEV(M) ⊆ FEV(N) ∪ (FEV(Θ ′′′) \ FEV(Θ ′′)) ′′

Z Θ =⇒ Θ ′′′ By Lemma C.4 (Weak context extension is transitive)
FEV(N) ⊆ FEV(Q→ N) By definition of FEV
FEV(Θ) = FEV(Θ ′′) By Lemma K.4 (Context extension maintains variables)

Z FEV(M) ⊆ FEV(Q→ N) ∪ (FEV(Θ ′′′) \ FEV(Θ)) Substituting above

• Case Θ; Γ ` s : N�M a Θ ′ α /∈ FUV(N)

Θ; Γ ` s : (∀α.N)�M a Θ ′
Aspinetypeabsnotin

98

Θ ctx Assumption
Θ ` Γ env Assumption

Θ; Γ ` s : N�M a Θ ′ Subderivation
Θ ` ∀α.N type− Assumption
Θ,α ` N type− Inversion (Twfforall)
Θ ` N type− By Lemma K.2 (Type well-formed with type variable removed)

[Θ](∀α.N) = ∀α.N Assumption
∀α. [Θ]N = ∀α.N By definition of [−]−

[Θ]N = N By equality

Z Θ ′ ctx By i.h.
Z Θ =⇒ Θ ′ ′′

Z Θ ′ `M type− ′′

Z [Θ ′]M = M ′′

FEV(M) ⊆ FEV(N) ∪ (FEV(Θ ′) \ FEV(Θ)) ′′

FEV(∀α.N) = FEV(N) By definition of FEV
Z FEV(M) ⊆ FEV(∀α.N) ∪ (FEV(Θ ′) \ FEV(Θ)) Substituting above

• Case Θ, α̂; Γ ` s : [α̂/α]N�M a Θ ′, α̂ [= P] α ∈ FUV(N)

Θ; Γ ` s : (∀α.N)�M a Θ ′, α̂ [= P]
Aspinetypeabsin

Θ ctx Assumption
Θ, α̂ ctx By Cwfunsolvedguess

Θ ` Γ env Assumption
Θ =⇒ Θ, α̂ By Lemma C.2 (Weak context extension is reflexive)

and Wcnewunsolvedguess

Θ, α̂ ` Γ env By Lemma C.6 (Weak context extension preserves w.f. envs)

Θ, α̂; Γ ` s : [α̂/α]N�M a Θ ′, α̂ [= P] Subderivation
Θ ` ∀α.N type− Assumption

α /∈ FUV(Θ) α fresh
Θ,α ` N type− By Twfforall

Θ, α̂ ` [α̂/α]N type− By Lemma K.3 (Substitution preserves well-formedness of types)

[Θ](∀α.N) = ∀α.N Assumption
[Θ]N = N By definition of [−]−

[Θ]([α̂/α]N) = [α̂/α]N α̂ fresh
[Θ, α̂]([α̂/α]N) = [α̂/α]N By definition of [−]−

Z Θ ′, α̂ [= P] ctx By i.h.
Θ, α̂ =⇒ Θ ′, α̂ [= P] ′′

Z Θ ′, α̂ [= P] `M type− ′′

Z [Θ ′, α̂ [= P]]M = M ′′

FEV(M) ⊆ FEV([α̂/α]N) ∪ (FEV(Θ ′, α̂ [= P]) \ FEV(Θ, α̂)) ′′

99

Θ =⇒ Θ By Lemma C.2 (Weak context extension is reflexive)
Θ =⇒ Θ, α̂ By α̂ fresh & Wcnewunsolvedguess

Z Θ =⇒ Θ ′, α̂ [= P] By Lemma C.4 (Weak context extension is transitive)

FEV(M) ⊆ FEV([α̂/α]N) ∪ (FEV(Θ ′, α̂ [= P]) \ FEV(Θ)) By definition of FEV
FEV([α̂/α]N) ⊆ FEV(∀α.N) ∪ {α̂} By definition of FEV

{α̂} ⊆ FEV(Θ ′, α̂ [= P]) \ FEV(Θ) By definition of FEV
Z FEV(M) ⊆ FEV(∀α.N) ∪ (FEV(Θ ′, α̂ [= P]) \ FEV(Θ)) By above

L’ Determinism of typing

Lemma L.1 (Algorithmic typing is deterministic).

• If Θ; Γ ` e : A1 a Θ ′1 and Θ; Γ ` e : A2 a Θ ′2, then A1 = A2 and Θ ′1 = Θ ′2.

• If Θ; Γ ` t : N�M1 a Θ ′1 and Θ; Γ ` t : N�M2 a Θ ′2, then M1 =M2 and Θ ′1 = Θ ′2.

Proof. The algorithmic system is mostly syntax-oriented, with the only exceptions Aspinetypeabsnotin and
Aspinetypeabsin (which have the same conclusion) being distinguished by whether α ∈ FUV(N), a deter-
ministic check. Therefore, determinacy of the system follows by a straightforward mutual rule induction
over the algorithmic synthesis and spine judgments, making use of Lemma H.1 (Algorithmic subtyping is
deterministic).

M’ Decidability of typing

Lemma M.1 (Decidability of algorithmic typing). There exists a total order @ on well-formed algorithmic
typing judgments such that for each derivation with typing judgment premises Ai and conclusion B, each Ai

compares less than B, i.e. ∀i. Ai @ B.

Proof. We use the same ordering of judgments as in Lemma J.1 (Isomorphic environments type the same
terms).

• Case x : P ∈ Γ
Θ; Γ ` x : P a Θ

Avar

Testing membership of Γ terminates since typing environments are finite.

• Case Θ; Γ, x : P ` t : N a Θ ′

Θ; Γ ` λx : P. t : P → N a Θ ′
Aλabs

|λx : P. t| = |t|+ 1 By definition of | |
> |t|

Z (Θ; Γ, x : P ` t : N a Θ ′)
By definition of @u

(Θ; Γ ` λx : P. t : P → N a Θ ′) 100

• Case Θ,α; Γ ` t : N a Θ ′, α
Θ; Γ ` Λα. t : ∀α.N a Θ ′

Agen

|Λα. t| = |t|+ 1 By definition of | |
> |t|

Z (Θ,α; Γ ` t : N a Θ ′, α)
By definition of @u

(Θ; Γ ` Λα. t : ∀α.N a Θ ′)

• Case Θ; Γ ` t : N a Θ ′

Θ; Γ ` {t} : ↓N a Θ ′ Athunk

|{t}| = |t|+ 1 By definition of | |
> |t|

Z (Θ; Γ ` t : N a Θ ′)
By definition of @u

(Θ; Γ ` {t} : ↓N a Θ ′)
• Case Θ; Γ ` v : P a Θ ′

Θ; Γ ` return v : ↑P a Θ ′ Areturn

|return v| = |v|+ 1 By definition of | |
> |v|

Z (Θ; Γ ` v : P a Θ ′)
By definition of @u

(Θ; Γ ` return v : ↑P a Θ ′)
• Case Θ; Γ ` v : ↓M a Θ ′ Θ ′; Γ ` s :M� ↑Q a Θ ′′ Θ ′′ ` P ≤+ Q a Θ ′′′

Θ ′′′ ` [Θ ′′′]Q ≤+ P a Θ(4) Θ(5) = Θ(4) � Θ Θ(5); Γ, x : P ` t : N a Θ(6)

Θ; Γ ` let x : P = v(s); t : N a Θ(6)
Aambiguouslet

The algorithmic subtyping judgments terminate per Lemma I.2 (Decidability of algorithmic subtyping).

|let x : P = v(s); t| = |v|+ |s|+ |t|+ 1 By definition of | |
|v| < |let x : P = v(s); t|

Z (Θ; Γ ` v : ↓M a Θ ′)
By definition of @u

(Θ; Γ ` let x : P = v(s); t : N a Θ(6))

|s| < |let x : P = v(s); t|

Z (Θ ′; Γ ` s :M� ↑Q a Θ ′′)
By definition of @u

101

(Θ; Γ ` let x : P = v(s); t : N a Θ(6))

|t| < |let x : P = v(s); t|

Z (Θ(5); Γ, x : P ` t : N a Θ(6))

By definition of @u
(Θ; Γ ` let x : P = v(s); t : N a Θ(6))

• Case Θ; Γ ` v : ↓M a Θ ′
Θ ′; Γ ` s :M� ↑Q a Θ ′′ FEV(Q) = ∅ Θ ′′′ = Θ ′′ � Θ Θ ′′′; Γ, x : Q ` t : N a Θ(4)

Θ; Γ ` let x = v(s); t : N a Θ(4)
Aunambiguouslet

Determining the set of free universal variables of a finite type is terminating.

|let x = v(s); t| = |v|+ |s|+ |t|+ 1 By definition of | |
|v| < |let x = v(s); t|

Z (Θ; Γ ` v : ↓M a Θ ′)
By definition of @u

(Θ; Γ ` let x = v(s); t : N a Θ(4))

|s| < |let x = v(s); t|

Z (Θ ′; Γ ` s :M� ↑Q a Θ ′′)
By definition of @u

(Θ; Γ ` let x = v(s); t : N a Θ(4))

|t| < |let x = v(s); t|

Z (Θ ′′′; Γ, x : P ` t : N a Θ(4))

By definition of @u
(Θ; Γ ` let x = v(s); t : N a Θ(4))

• Case

Θ; Γ ` ε : N� N a Θ
Aspinenil

Rule terminal.

• Case Θ; Γ ` v : P a Θ ′ Θ ′ ` P ≤+ [Θ ′]Q a Θ ′′ Θ ′′; Γ ` s : [Θ ′′]N�M a Θ ′′′

Θ; Γ ` v, s : Q→ N�M a Θ ′′′
Aspinecons

The algorithmic subtyping judgment terminates per Lemma I.2 (Decidability of algorithmic subtyping).

|v, s| = |v|+ |s|+ 1 By definition of | |
> |v|

Z (Θ; Γ ` v : P a Θ ′)
By definition of @u

(Θ; Γ ` v, s : Q→ N�M a Θ ′′′)
|v, s| > |s|

Z (Θ ′′; Γ ` s : [Θ ′′]N�M a Θ ′′′)
By definition of @

102

u
Θ; Γ ` v, s : Q→ N�M a Θ ′′′

• Case Θ; Γ ` s : N�M a Θ ′ α /∈ FUV(N)

Θ; Γ ` s : (∀α.N)�M a Θ ′
Aspinetypeabsnotin

|s| = |s|

NPQ(∀α.N) >NPQ(N)

Z (Θ; Γ ` s : N�M a Θ ′)
By definition of @u

(Θ; Γ ` s : (∀α.N)�M a Θ ′)

We define types to be finite, therefore calculating FUV(N) is terminating.

• Case Θ, α̂; Γ ` s : [α̂/α]N�M a Θ ′, α̂ [= P] α ∈ FUV(N)

Θ; Γ ` s : (∀α.N)�M a Θ ′, α̂ [= P]
Aspinetypeabsin

|s| = |s|

NPQ(∀α.N) >NPQ([α̂/α]N) Since α and α̂ are positive, the substitution
cannot introduce any prenex quantifiers.

Z (Θ, α̂; Γ ` s : [α̂/α]N�M a Θ ′, α̂[= P])
By definition of @u

(Θ; Γ ` s : (∀α.N)�M a Θ ′)

We define types to be finite, therefore calculating FUV(N) is terminating.

N’ Soundness of typing

N’.1 Lemmas

Lemma N.1 (Extended complete context). If Θ ′ ctx, Ω ctx, Θ −→ Ω, Θ =⇒ Θ ′, and Θ ′ � Θ −→ Ω, then
∃Ω ′ such that Ω ′ ctx, Θ ′ −→ Ω ′, and Ω =⇒ Ω ′.

Proof. We add the α̂ [= P] context items that newly appear in Θ ′ to the complete context.
By rule induction on Θ =⇒ Θ ′:

• Case

· =⇒ ·
Wcempty

The new context is ·.

Z · ctx By Cwfempty

Z · −→ · By Cempty

Z · =⇒ · By Wcempty
103

• Case Θ =⇒ Θ ′

Θ,α =⇒ Θ ′, α
Wcuvar

We add the α context item onto the new context from the induction hypothesis.

Θ ′, α ctx Assumption
(1) Θ ′ ctx Inversion (Cwfuvar)

Θ,α −→ Ω Assumption
Ω = Ω̄, α Inversion (Cuvar)

(2) Θ −→ Ω̄ ′′

Ω̄, α ctx Assumption
(3) Ω̄ ctx Inversion (Cwfuvar)
(4) Θ =⇒ Θ ′ Subderivation

Θ ′, α� Θ,α −→ Ω̄, α Assumption
(5) Θ ′ � Θ −→ Ω̄ Inversion (�uvar)

Ω̄ ′ ctx By i.h., using (1–5) and for some complete context Ω̄ ′

Θ ′ −→ Ω̄ ′ ′′

Ω̄ =⇒ Ω̄ ′ ′′

Z Ω̄ ′, α ctx By Cwfuvar

Z Θ ′, α −→ Ω̄ ′, α By Cuvar

Z Ω̄, α =⇒ Ω̄ ′, α By Wcuvar

• Case Θ =⇒ Θ ′

Θ, α̂ =⇒ Θ ′, α̂
Wcunsolvedguess

We add the α̂ = P context item to the new context from the induction hypothesis, where P is the
solution for α̂ in the complete context Ω.

Θ ′, α̂ ctx Assumption
(1) Θ ′ ctx Inversion (Cwfunsolvedguess)

Θ, α̂ −→ Ω Assumption
Θ, α̂ −→ Ω Assumption

Ω = Ω̄, α̂ = P Inversion (Csolveguess)
(2) Θ −→ Ω̄ ′′

Ω̄, α̂ = P ctx Assumption
(3) Ω̄ ctx Inversion (Cwfsolvedguess)

Ω̄ ` P type+ ′′

P ground ′′

(4) Θ =⇒ Θ ′ Subderivation
Θ ′, α̂� Θ, α̂ −→ Ω̄, α̂ = P Assumption
(Θ ′ � Θ), α̂ −→ Ω̄, α̂ = P Inversion (�guessin)

(5) Θ ′ � Θ −→ Ω̄ Inversion (Csolveguess)

Ω̄ ′ ctx By i.h., using (1–5) and for some complete context Ω̄ ′

Θ ′ −→ Ω̄ ′ ′′

104

Ω̄ =⇒ Ω̄ ′ ′′

Ω̄ ′ ` P type+ By Lemma C.5 (Weak context extension preserves well-formedness)
Z Ω̄ ′, α̂ = P ctx By Cwfsolvedguess

Z Θ ′, α̂ −→ Ω̄ ′, α̂ = P By Csolveguess

[Ω]Ω̄ ` P ∼=
+ P By Lemma B.1 (Declarative subtyping is reflexive)

Z Ω̄, α̂ = P =⇒ Ω̄ ′, α̂ = P By Wcsolvedguess

• Case Θ =⇒ Θ ′

Θ, α̂ =⇒ Θ ′, α̂ = P
Wcsolveguess

As before, we add the α̂ = Q context item to the new context from the induction hypothesis, where Q
is the solution for α̂ in the complete context Ω.

Θ ′, α̂ = P ctx Assumption
(1) Θ ′ ctx Inversion (Cwfsolvedguess)

Θ, α̂ −→ Ω Assumption
Ω = Ω̄, α̂ = Q Inversion (Csolveguess)

(2) Θ −→ Ω̄ ′′

Ω̄, α̂ = Q ctx Assumption
(3) Ω̄ ctx Inversion (Cwfsolvedguess)

Ω̄ ` Q type+ ′′

Q ground ′′

(4) Θ =⇒ Θ ′ Subderivation
Θ ′, α̂ = P � Θ, α̂ −→ Ω̄, α̂ = Q Assumption
(Θ ′ � Θ), α̂ = P −→ Ω̄, α̂ = Q Inversion (�guessin)

(5) Θ ′ � Θ −→ Ω̄ Inversion (Csolvedguess)
[Ω]Θ ′ � Θ ` P ∼=

+Q ′′

Ω̄ ′ ctx By i.h., using (1–5) and for some complete context Ω̄ ′

Θ ′ −→ Ω̄ ′ ′′

Ω̄ =⇒ Ω̄ ′ ′′

Ω̄ ′ ` Q type+ By Lemma C.5 (Weak context extension preserves well-formedness)
Z Ω̄ ′, α̂ = Q ctx By Cwfsolvedguess

‖Θ ′‖ ` P ∼=
+Q Since [Ω](Θ ′ � Θ) = [Ω]Θ ′

Z Θ ′, α̂ = P −→ Ω̄ ′, α̂ = Q By Csolvedguess

[Ω]Ω̄ ` Q ∼=
+Q By Lemma B.1 (Declarative subtyping is reflexive)

Z Ω̄, α̂ = Q =⇒ Ω̄ ′, α̂ = Q By Wcsolvedguess

• Case
Θ =⇒ Θ ′ ‖Θ‖ ` P ∼=

+ Q

Θ, α̂ = P =⇒ Θ ′, α̂ = Q
Wcsolvedguess

We add the α̂ = R context item to the new context from the induction hypothesis, where R is the
solution for α̂ in the complete context Ω.

105

Θ ′, α̂ = Q ctx Assumption
(1) Θ ′ ctx Inversion (Cwfsolvedguess)

Θ, α̂ −→ Ω Assumption
Θ, α̂ = P −→ Ω Assumption

Ω = Ω̄, α̂ = R Inversion (Csolvedguess)
(2) Θ −→ Ω̄ ′′

‖Θ‖ ` P ∼=
+ R ′′

Ω̄, α̂ = R ctx Assumption
(3) Ω̄ ctx Inversion (Cwfsolvedguess)

Ω̄ ` R type+ ′′

R ground ′′

(4) Θ =⇒ Θ ′ Subderivation
Θ ′, α̂ = Q� Θ, α̂ = P −→ Ω̄, α̂ = R Assumption

(Θ ′ � Θ), α̂ = Q −→ Ω̄, α̂ = R Inversion (�guessin)
(5) Θ ′ � Θ −→ Ω̄ Inversion (Csolvedguess)

Ω̄ ′ ctx By i.h., using (1–5) and for some complete context Ω̄ ′

Θ ′ −→ Ω̄ ′ ′′

Ω̄ =⇒ Ω̄ ′ ′′

Ω̄ ′ ` R type+ By Lemma C.5 (Weak context extension preserves well-formedness)
Z Ω̄ ′, α̂ = R ctx By Cwfsolvedguess

‖Θ‖ ` P ∼=
+Q Premise

‖Θ‖ ` Q ∼=
+ R By Lemma B.7 (Declarative subtyping is transitive)

‖Θ ′‖ ` Q ∼=
+ R By Lemma C.3 (Equality of declarative contexts (weak))

Z Θ ′, α̂ = Q −→ Ω̄ ′, α̂ = R By Csolvedguess

[Ω]Ω̄ ` P ∼=
+ R By Lemma D.2 (Equality of declarative contexts)

Z Ω̄, α̂ = P =⇒ Ω̄ ′, α̂ = R By Wcsolvedguess

• Case Θ =⇒ Θ ′

Θ =⇒ Θ ′, α̂
Wcnewunsolvedguess

We add a solved context item for α̂ to the new complete context from the induction hypothesis.

Θ ′, α ctx Assumption
(1) Θ ′ ctx Inversion (Cwfuvar)
(2) Θ −→ Ω Assumption
(3) Ω ctx Assumption
(4) Θ =⇒ Θ ′ Subderivation

(Θ ′, α̂)� Θ −→ Ω Assumption
(5) Θ ′ � Θ −→ Ω Inversion (�guessnotin)

Ω ′ ctx By i.h., using (1–5) and for some complete context Ω ′

Θ ′ −→ Ω ′ ′′

Ω =⇒ Ω ′ ′′

Z (Ω ′, α̂ = ↓∀α. ↑α) ctx By Cwfsolvedguess

Z Θ ′, α̂ −→ (Ω ′, α̂ = ↓∀α. ↑α) By Csolveguess

106

Z Ω =⇒ (Ω ′, α̂ = ↓∀α. ↑α) By Wcnewunsolvedguess

• Case Θ =⇒ Θ ′

Θ =⇒ Θ ′, α̂ = P
Wcnewsolvedguess

We add the α̂ = P context item onto the new context from the induction hypothesis.

Θ ′, α̂ = P ctx Assumption
(1) Θ ′ ctx Inversion (Cwfunsolvedguess)

Θ ′ ` P type+ ′′

P ground ′′

(2) Θ −→ Ω Assumption
(3) Ω ctx Assumption
(4) Θ =⇒ Θ ′ Subderivation

(Θ ′, α̂ = P)� Θ −→ Ω Assumption
(5) Θ ′ � Θ −→ Ω Inversion (�guessnotin)

Ω ′ ctx By i.h., using (1–5) and for some complete context Ω ′

Θ ′ −→ Ω ′ ′′

Ω =⇒ Ω ′ ′′

Ω ′ ` P type+ By Lemma D.4 (Context extension preserves w.f.)
Z (Ω ′, α̂ = P) ctx By Cwfsolvedguess

Z Θ ′, α̂ −→ (Ω ′, α̂ = P) By Csolveguess

Z Ω =⇒ (Ω ′, α̂ = P) By Wcnewunsolvedguess

Lemma N.2 (Identical restricted contexts). If Θ ′ ctx and Θ −→ Θ ′, then Θ ′′ � Θ = Θ ′′ � Θ ′.

Proof. By rule induction on the Θ ′′ � Θ judgment.

• Case

·� · = ·
�empty

· −→ Θ ′ Assumption
Θ ′ = · Inversion (Cempty)

Z ·� · = · By �empty

• Case Θ ′′ � Θ = Θ ′′′

Θ ′′, α� Θ,α = Θ ′′′, α
�uvar

α ∈Θ ′ By Lemma K.4 (Context extension maintains variables)
Θ ′′ � Θ ′ = Θ ′′′ By i.h.

107

Z Θ ′′, α� Θ ′ = Θ ′′′, α By �uvar

(the α context item must appear last in Θ ′ by well-formedness of Θ ′)

• Case Θ ′′ � Θ = Θ ′′′

Θ ′′, α̂ [= P]� Θ, α̂ [= Q] = Θ ′′′, α̂ [= P]
�guessin

α̂ [= R] ∈Θ ′ By Lemma K.4 (Context extension maintains variables)
Θ ′′ � Θ ′ = Θ ′′′ By i.h.

Z Θ ′′, α̂ [= P]� Θ ′ = Θ ′′′, α̂ [= P] By �guessin

(the α̂ [= R] context item must appear in Θ ′ last by well-formedness of Θ ′)

• Case Θ ′′ � Θ = Θ ′′′ α̂ [= Q] /∈ Θ
Θ ′′, α̂ [= P]� Θ = Θ ′′′

�guessnotin

α̂ [= R] /∈Θ ′ By Lemma K.4 (Context extension maintains variables)
Θ ′′ � Θ ′ = Θ ′′′ By i.h.

Z Θ ′′, α̂ [= P]� Θ ′ = Θ ′′′ By �guessnotin

N’.2 Statement

Theorem N.3 (Soundness of algorithmic typing). If Θ ctx, Θ ` Γ env, Θ ′ −→ Ω, and Ω ctx, then:

• If Θ; Γ ` v : P a Θ ′, then ‖Θ‖ ; Γ ` v : [Ω]P.

• If Θ; Γ ` t : N a Θ ′, then ‖Θ‖ ; Γ ` t : [Ω]N.

• If Θ; Γ ` s : N�M a Θ ′, Θ ` N type−, and [Θ]N = N, then ∃M ′ such that ‖Θ‖ ` [Ω]M ∼=
− M ′ and

‖Θ‖ ; Γ ` s : [Ω]N�M ′.

Proof. By mutual induction with Theorem O.4 (Completeness of algorithmic typing), using the judgment
ordering from Lemma J.1 (Isomorphic environments type the same terms).

• Case x : P ∈ Γ
Θ; Γ ` x : P a Θ

Avar

x : P ∈ Γ Premise
P ground Typing environment only contains ground types

x : [Ω]P ∈ Γ By Lemma D.5 (Applying a context to a ground type)
Z ‖Θ‖ ; Γ ` x : [Ω]P By Dvar

108

• Case Θ; Γ, x : P ` t : N a Θ ′

Θ; Γ ` λx : P. t : P → N a Θ ′
Aλabs

Θ ctx Assumption
Θ ` Γ env Assumption

Θ; Γ ` λx : P. t : P → N a Θ ′ Assumption
Θ ` P → N type− By Lemma K.5 (Algorithmic typing is w.f)

P → N ground ′′

Θ ` P type+ Inversion (Twfarrow)
P → N ground Assumption

P ground By definition of ground
Θ ` Γ, x : P env By Ewfvar

‖Θ‖ ; Γ, x : P ` t : [Ω]N By i.h. (term size decreases)
‖Θ‖ ; Γ, x : P ` t : [Ω]N By definition of [−]−

‖Θ‖ ; Γ, x : [Ω]P ` t : [Ω]N By Lemma D.5 (Applying a context to a ground type)
‖Θ‖ ; Γ ` λx.t : [Ω]P → [Ω]N By Dλabs

Z ‖Θ‖ ; Γ ` λx.t : [Ω](P → N) By definition of [−]−

• Case Θ,α; Γ ` t : N a Θ ′, α
Θ; Γ ` Λα. t : ∀α.N a Θ ′

Agen

Θ ctx Assumption
Θ,α ctx By Cwfuvar

Θ ` Γ env Assumption
Θ,α ` Γ env Weakening
Θ ′ −→ Ω Assumption

Θ ′, α −→ Ω,α By Cuvar

Ω ctx Assumption
Ω,α ctx By Cwfuvar

‖Θ,α‖ ; Γ ` t : [Ω,α]N By i.h. (term size decreases)
‖Θ‖ , α; Γ ` t : [Ω]N By definitions of ‖−‖ and [−]−

‖Θ‖ ; Γ ` Λα. t : ∀α. ([Ω]N) By Dgen

Z ‖Θ‖ ; Γ ` Λα. t : [Ω](∀α.N) By definition of [−]−

• Case Θ; Γ ` t : N a Θ ′

Θ; Γ ` {t} : ↓N a Θ ′ Athunk

Θ; Γ ` t : N a Θ ′ Subderivation
‖Θ‖ ; Γ ` t : [Ω]N By i.h. (term size decreases)
‖Θ‖ ; Γ ` {t} : ↓[Ω]N By Dthunk

Z ‖Θ‖ ; Γ ` t : [Ω]↓N By definition of [−]−

109

• Case Θ; Γ ` v : P a Θ ′

Θ; Γ ` return v : ↑P a Θ ′ Areturn

Symmetric to Athunk case.

• Case Θ; Γ ` v : ↓M a Θ ′ Θ ′; Γ ` s :M� ↑Q a Θ ′′ Θ ′′ ` P ≤+ Q a Θ ′′′

Θ ′′′ ` [Θ ′′′]Q ≤+ P a Θ(4) Θ(5) = Θ(4) � Θ Θ(5); Γ, x : P ` t : N a Θ(6)

Θ; Γ ` let x : P = v(s); t : N a Θ(6)
Aambiguouslet

Use well-formedness of the first premise:

Θ ctx Assumption
Θ ` Γ env Assumption

Θ; Γ ` v : ↓M a Θ ′ Subderivation

Θ −→ Θ ′ By Lemma K.5 (Algorithmic typing is w.f)
Θ ′ ctx ′′

Θ ′ ` ↓M type+ ′′↓M ground ′′

Now use the well-formedness of Θ ′; Γ ` s :M� ↑Q a Θ ′′:
Θ ′ ctx Above

(1) Θ =⇒ Θ ′ By Lemma C.1 (=⇒ subsumes −→)
Θ ′ ` Γ env By Lemma C.6 (Weak context extension preserves w.f. envs)

Θ ′ `M type− Inversion (Twfshift↓)
M ground By definition of ground

[Θ ′]M = M By Lemma D.5 (Applying a context to a ground type)

(2) Θ ′ =⇒ Θ ′′ By Lemma K.5 (Algorithmic typing is w.f)
Θ ′′ ctx ′′

Θ ′′ ` ↑Q type− ′′

[Θ ′′]↑Q = ↑Q ′′

Next use the well-formedness of Θ ′′ ` P ≤+ Q a Θ ′′′:

Θ ′′ ctx Above
P ground P annotation

[Θ ′′]Q = Q By definition of [−]−

Θ ′′′ ctx By Lemma K.5 (Algorithmic typing is w.f)
Θ ′′ −→ Θ ′′′ ′′

[Θ ′′′]Q ground ′′

And the well-formedness of Θ ′′′ ` [Θ ′′′]Q ≤+ P a Θ(4):

Θ ′′′ ctx Above
[Θ ′′′]Q ground Above

[Θ ′′′]P = P By Lemma D.5 (Applying a context to a ground type)

110

Θ(4) ctx By Lemma K.5 (Algorithmic typing is w.f)
Θ ′′′ −→ Θ(4) ′′

Use the well-formedness of the restricted context:

Θ ctx Above
Θ(4) ctx Above

Θ ′′ =⇒ Θ ′′′ By Lemma C.1 (=⇒ subsumes −→)
Θ ′′′ =⇒ Θ(4) By Lemma C.1 (=⇒ subsumes −→)
Θ =⇒ Θ(4) Applying Lemma C.4 (Weak context extension is transitive)

to (1), (2), and above
Θ(5) = Θ(4) � Θ Premise

Θ(5) ctx By Lemma K.1 (Well-formedness of restricted contexts)
(3) Θ −→ Θ(5) ′′

(4) Θ(5) =⇒ Θ(4) ′′

Finally use the well-formedness of Θ(5); Γ, x : P ` t : N a Θ ′′′′:

Θ ` Γ env Assumption
Θ =⇒ Θ(5) By Lemma C.1 (=⇒ subsumes −→)
Θ(5) ` Γ env By Lemma C.6 (Weak context extension preserves w.f. envs)
Θ ` P type+ P annotation

P ground ′′

Θ(5) ctx Above
Θ(5) ` Γ, x : P env By Ewfvar

Θ(5); Γ ; x : P ` t : N a Θ(6) Subderivation

Θ(6) ctx By Lemma K.5 (Algorithmic typing is w.f)
Θ(5) −→ Θ(6) ′′

Use Lemma N.1 (Extended complete context) to obtain a complete context for the second to fourth judg-
ments:

Θ(5) −→ Θ(6) Above
Θ(6) −→ Ω Assumption
Θ(5) −→ Ω By Lemma D.3 (Context extension is transitive)

Θ(4) ctx Above
Ω ctx Assumption

Θ(5) −→ Ω Above
Θ(5) =⇒ Θ(4) Above
Θ(5) = Θ(4) � Θ Above

Θ(4) � Θ −→ Ω Substituting using above
Θ(4) � Θ(5) −→ Ω By Lemma N.2 (Identical restricted contexts)

Ω ′ ctx By Lemma N.1 (Extended complete context)
Θ(4) −→ Ω ′ ′′

Ω =⇒ Ω ′ ′′

111

Θ ′′′ −→ Θ(4) Above
Θ ′′′ −→ Ω ′ By Lemma D.3 (Context extension is transitive)

Θ ′′ −→ Θ ′′′ Above
Θ ′′ −→ Ω ′ By Lemma D.3 (Context extension is transitive)

Restrict Ω ′ such that Θ ′ extends to it:

Θ ′′ =⇒ Ω ′ By Lemma C.1 (=⇒ subsumes −→)
Θ ′ =⇒ Ω ′ By Lemma C.4 (Weak context extension is transitive)

Let Ω ′′ = Ω ′ � Θ ′.
Ω ′′ ctx By Lemma K.1 (Well-formedness of restricted contexts)

Θ ′ −→ Ω ′′ ′′

Ω ′′ =⇒ Ω ′ ′′

Apply the induction hypothesis to the first premise:

Θ ctx Above
Θ ` Γ env Above

Θ ′ −→ Ω ′′ Above
Ω ′′ ctx Above

Θ; Γ ` v : ↓M a Θ ′ Subderivation
‖Θ‖ ; Γ ` v : [Ω ′′]↓M By i.h. (term size decreases)

Ω ′′ ` ↓M type− By Lemma D.4 (Context extension preserves w.f.)
Ω ′′ =⇒ Ω ′ Above
[Ω ′]M ground By Lemma D.5 (Applying a context to a ground type)
Ω ′′ ctx Above
Ω ′ ctx Above

‖Ω ′′‖ ` [Ω ′′]M ∼=
− [Ω ′]M By Lemma F.3 (=⇒ leads to isomorphic types (ground))

‖Θ‖ ` [Ω ′′]M ∼=
− [Ω ′]M By Lemma O.1 (Weak context extension maintains variables) and

Lemma K.4 (Context extension maintains variables)

Next apply the induction hypothesis to the spine premise:

Θ ′ ctx Above
Θ ′ ` Γ env Above

Θ ′′ −→ Ω ′ Above
Ω ′ ctx Above

Θ ′; Γ ` s :M� ↑Q a Θ ′′ Subderivation
Θ ′ `M type− Above
[Θ ′]M = M Above
‖Θ‖ ; Γ ` s : [Ω ′]M�M ′ By i.h. (term size decreases)

‖Θ‖ ` [Ω ′]↑Q ∼=
−M ′ ′′

M ′ = ↑Q ′ Declarative typing rules preserve shift structure
‖Θ‖ ; Γ ` s : [Ω ′]M� ↑Q ′ Substituting above

‖Θ‖ ; Γ ` s : [Ω ′′]M� ↑Q ′′ By Lemma J.1 (Isomorphic environments type the same terms),
using the fact that declarative typing rules preserve shift structure

112

‖Θ‖ ` ↑Q ′ ∼=− ↑Q ′′ ′′

Show the third premise of Dambiguouslet, first by establishing one direction of the isomorphism:

(5) Θ ′′ ctx Shown above
(6) Θ ′′′ −→ Ω ′ Above
(7) Θ ′′ ` P type+ Above
(8) P ground Above

Θ ′′ ` ↑Q type− Above
(9) Θ ′′ ` Q type+ By inversion of Twfshift↑

[Θ ′′]↑Q = ↑Q By Lemma K.5 (Algorithmic typing is w.f)
(10) [Θ ′′]Q = Q By definition of [−]−

‖Θ ′′‖ ` P ≤+ [Ω ′]Q By (5 – 10) & Theorem F.6 (Soundness of algorithmic subtyping)

Now establish the other direction:

Θ ′′′ ctx Shown above
Θ(4) −→ Ω ′ Above

Θ ′′′ ` [Θ ′′′]Q type+ By Lemma E.1 (Applying context to the type preserves w.f.)
[Θ ′′′]Q ground Above
Θ ′′′ ` P type+ By Lemma D.4 (Context extension preserves w.f.)
[Θ ′′′]P = P By Lemma D.5 (Applying a context to a ground type)

‖Θ ′′′‖ ` [Θ ′′′]Q ≤+ [Ω ′]P By Theorem F.6 (Soundness of algorithmic subtyping)

Show the fourth premise of Dambiguouslet:

‖Θ ′′′‖ ` [Θ ′′′]Q ≤+ P By Lemma D.5 (Applying a context to a ground type)
‖Θ ′′′‖ ` [Θ ′′′]Q ∼=

+ [Ω ′]Q By Lemma F.5 (−→ leads to isomorphic types (ground))
‖Θ ′′′‖ ` [Ω ′]Q ≤+ P By Lemma B.7 (Declarative subtyping is transitive)
‖Θ ′′‖ ` [Ω ′]Q ≤+ P By Lemma D.2 (Equality of declarative contexts)
‖Θ‖ ` [Ω ′]Q ≤+ P By Lemma C.3 (Equality of declarative contexts (weak))

‖Θ‖ ` P ≤+ [Ω ′]Q By Lemma C.3 (Equality of declarative contexts (weak))
‖Θ‖ ` P ∼=

+ [Ω ′]Q We have shown the subtyping in both directions

‖Θ‖ ` [Ω ′]↑Q ∼=
−M ′ Above

‖Θ‖ ` [Ω ′]↑Q ∼=
− ↑Q ′ Substituting definition of Q ′ into above

‖Θ‖ ` [Ω ′]Q ∼=
+Q ′ Inversion (≤±Dshift↑)

‖Θ‖ ` P ∼=
+Q ′ By Lemma B.7 (Declarative subtyping is transitive)

‖Θ‖ ` ↑P ≤− ↑Q ′ By ≤±Dshift↑
‖Θ‖ ` ↑P ≤− ↑Q ′′ By Lemma B.7 (Declarative subtyping is transitive)

And now show the final premise of Dambiguouslet:

Θ ` N type− Assumption
(11) Θ(5) ctx Above

Θ ` Γ env Assumption
Θ(5) ` Γ env By Lemma C.6 (Weak context extension preserves w.f. envs)

Θ(5) ` P type+ By Lemma D.4 (Context extension preserves w.f.)
P ground Above

113

(12) Θ(5) ` Γ, x : P env By Ewfvar

(13) Θ(6) −→ Ω Assumption

‖Θ‖ ; Γ, x : P ` t : [Ω]N By (11–13) & i.h.

Finally apply Dambiguouslet:

Z ‖Θ‖ ; Γ ` let x : P = v(s); t : [Ω]N By Dambiguouslet

• Case Θ; Γ ` v : ↓M a Θ ′
Θ ′; Γ ` s :M� ↑Q a Θ ′′ FEV(Q) = ∅ Θ ′′′ = Θ ′′ � Θ Θ ′′′; Γ, x : Q ` t : N a Θ(4)

Θ; Γ ` let x = v(s); t : N a Θ(4)
Aunambiguouslet

As with the Aambiguouslet case, first use the well-formedness of the first premise:

Θ ctx Assumption
Θ ` Γ env Assumption

Θ; Γ ` v : ↓M a Θ ′ Subderivation

Θ −→ Θ ′ By Lemma K.5 (Algorithmic typing is w.f)
Θ ′ ctx ′′

Θ ′ ` ↓M type+ ′′↓M ground ′′

Now use the well-formedness of Θ ′; Γ ` s :M� ↑Q a Θ ′′:
Θ ′ ctx Above

(1) Θ =⇒ Θ ′ By Lemma C.1 (=⇒ subsumes −→)
Θ ′ ` Γ env By Lemma C.6 (Weak context extension preserves w.f. envs)

Θ ′ `M type− Inversion (Twfshift↓)
M ground By definition of ground

[Θ ′]M = M By Lemma D.5 (Applying a context to a ground type)

(2) Θ ′ =⇒ Θ ′′ By Lemma K.5 (Algorithmic typing is w.f)
Θ ′′ ctx ′′

Θ ′′ ` ↑Q type− ′′

Use the well-formedness of the restricted context:

Θ ctx Above
Θ ′′ ctx Above

Θ =⇒ Θ ′′ Applying Lemma C.4 (Weak context extension is transitive)
to (1) and (2)

Θ ′′′ = Θ ′′ � Θ Premise

(3) Θ ′′′ ctx By Lemma K.1 (Well-formedness of restricted contexts)
Θ −→ Θ ′′′ ′′

Θ ′′′ =⇒ Θ ′′ ′′

114

Finally use the well-formedness of Θ ′′′; Γ, x : P ` t : N a Θ(4):

Θ ` Γ env Assumption
Θ =⇒ Θ ′′′ By Lemma C.1 (=⇒ subsumes −→)
Θ ′′′ ` Γ env By Lemma C.6 (Weak context extension preserves w.f. envs)
Θ ` P type+ P annotation

P ground ′′

Θ ′′′ ctx Above
Θ ′′′ ` Γ, x : P env By Ewfvar

Θ ′′′; Γ ; x : P ` t : N a Θ(4) Subderivation

Θ(4) ctx By Lemma K.5 (Algorithmic typing is w.f)
Θ ′′′ −→ Θ(4) ′′

Use Lemma N.1 (Extended complete context) to obtain a complete context for the second judgment:

Θ ′′′ −→ Θ(4) Above
Θ(4) −→ Ω Assumption
Θ ′′′ −→ Ω By Lemma D.3 (Context extension is transitive)

Θ ′′ ctx Above
Ω ctx Assumption

Θ ′′′ −→ Ω Above
Θ ′′′ =⇒ Θ ′′ Above
Θ ′′′ = Θ ′′ � Θ Above

Θ ′′ � Θ −→ Ω Substituting using above
Θ ′′ � Θ ′′′ −→ Ω By Lemma N.2 (Identical restricted contexts)

Ω ′ ctx By Lemma N.1 (Extended complete context)
Θ ′′ −→ Ω ′ ′′

Ω =⇒ Ω ′

Restrict Ω ′ such that Θ ′ extends to it:

Θ ′′ =⇒ Ω ′ By Lemma C.1 (=⇒ subsumes −→)
Θ ′ =⇒ Ω ′ By Lemma C.4 (Weak context extension is transitive)

Let Ω ′′ = Ω ′ � Θ ′.
Ω ′′ ctx By Lemma K.1 (Well-formedness of restricted contexts)

Θ ′ −→ Ω ′′ ′′

Ω ′′ =⇒ Ω ′ ′′

Apply the induction hypothesis to the first premise:

Θ ctx Above
Θ ` Γ env Above

Θ ′ −→ Ω ′′ Above
Ω ′′ ctx Above

Θ; Γ ` v : ↓M a Θ ′ Subderivation
‖Θ‖ ; Γ ` v : [Ω ′′]↓M By i.h. (term size decreases)

115

Ω ′′ ` ↓M type− By Lemma E.1 (Applying context to the type preserves w.f.)
Ω ′′ =⇒ Ω ′ Above
[Ω ′]M ground By Lemma D.5 (Applying a context to a ground type)
Ω ′′ ctx Above
Ω ′ ctx Above

‖Ω ′′‖ ` [Ω ′′]M ∼=
− [Ω ′]M By Lemma F.3 (=⇒ leads to isomorphic types (ground))

‖Θ‖ ` [Ω ′′]M ∼=
− [Ω ′]M By Lemma O.1 (Weak context extension maintains variables) and

Lemma K.4 (Context extension maintains variables)

Next apply the induction hypothesis to the spine premise:

Θ ′ ctx Above
Θ ′ ` Γ env Above

Θ ′′ −→ Ω ′ Above
Ω ′ ctx Above

Θ ′; Γ ` s :M� ↑Q a Θ ′′ Subderivation
Θ ′ `M type− Above
[Θ ′]M = M Above
‖Θ‖ ; Γ ` s : [Ω ′]M�M ′ By i.h. (term size decreases)

‖Θ‖ ` [Ω ′]↑Q ∼=
−M ′ ′′

M ′ = ↑Q ′ Declarative typing rules preserve shift structure
‖Θ‖ ; Γ ` s : [Ω ′]M� ↑Q ′ Substituting above equation

‖Θ‖ ; Γ ` s : [Ω ′′]M� ↑Q ′′ By Lemma J.1 (Isomorphic environments type the same terms),
using the fact that declarative typing rules preserve shift structure

‖Θ‖ ` ↑Q ′ ∼=− ↑Q ′′ ′′

Next apply the induction hypothesis to the last premise:

Θ ` N type− Assumption
(4) Θ ′′′ ctx Above

Θ ` Γ env Assumption
Θ ′′′ ` Γ env By Lemma C.6 (Weak context extension preserves w.f. envs)

Θ ′′′ ` Q type+ By Lemma D.4 (Context extension preserves w.f.)
FEV(Q) = ∅ Premise

Q ground By definition of ground
(5) Θ ′′′ ` Γ, x : Q env By Ewfvar

Θ(4) −→ Ω Assumption
Θ ′′′ −→ Θ(4) Above

(6) Θ ′′′ −→ Ω By Lemma D.3 (Context extension is transitive)

‖Θ‖ ; Γ, x : Q ` t : [Ω]N By (4–6) & i.h.

Rework the declarative judgment we got from the induction hypothesis to match the form we need to apply
Dunambiguouslet:

‖Θ‖ ` [Ω ′]↑Q ∼=
−M ′ Above

‖Θ‖ ` ↑Q ∼=
−M ′ By Lemma D.5 (Applying a context to a ground type)

‖Θ‖ ` ↑Q ∼=
− ↑Q ′ Substituting in the definition of Q ′

‖Θ‖ ` ↑Q ∼=
− ↑Q ′′ By Lemma B.7 (Declarative subtyping is transitive)

116

‖Θ‖ ` Q ∼=
+Q ′′ Inversion (≤±Ashift↑)

‖Θ‖ ; Γ, x : Q ′′ ` t : [Ω]N Using Lemma J.1 (Isomorphic environments type the same terms)
to change the typing environment

Now show that for all positive types P, if ‖Θ‖ ; Γ ` s : [Ω ′]M� ↑P then ‖Θ‖ ` Q ′′ ∼=
+ P. Let P be an

arbitrary positive type such that ‖Θ‖ ; Γ ` s : [Ω ′]M� ↑P.

‖Θ ′‖ ; Γ ` s : [Ω ′]M� ↑P By Lemma D.2 (Equality of declarative contexts)
Θ ′; Γ ` s :M� ↑R a Θ̂ ′′ By Theorem O.4 (Completeness of algorithmic typing),

for some R and Θ̂ ′′ (term size decreases)
(7) [Ω ′]↑R = ↑P ′′

Θ ′; Γ ` s :M� ↑Q a Θ ′′ Subderivation↑R = ↑Q By Lemma H.1 (Algorithmic subtyping is deterministic)
[Ω ′]↑Q = [Ω ′]↑R Applying Ω ′ to both sides
[Ω ′]↑Q = ↑P Substituting using (7)

(9) [Ω ′]Q = P By definition of [−]−

‖Θ‖ ` P ≤+ P By Lemma B.1 (Declarative subtyping is reflexive)
‖Θ‖ ` P ∼=

+ P By definition of ∼=
±

‖Θ‖ ` [Ω ′]Q ∼=
+ P Substituting using (8)

‖Θ‖ ` [Ω ′]Q ∼=
+Q ′ Above

‖Θ‖ ` Q ′′ ∼=+ P Applying Lemma B.7 (Declarative subtyping is transitive) twice

Finally apply Dunambiguouslet:

Z ‖Θ‖ ; Γ ` let x = v(s); t : [Ω]N By Dunambiguouslet

• Case

Θ; Γ ` ε : N� N a Θ
Aspinenil

Z ‖Θ‖ ; Γ ` ε : [Ω]N� [Ω]N By Dspinenil

Z ‖Θ‖ ` [Ω]N ∼=
− [Ω]N By Lemma B.1 (Declarative subtyping is reflexive)

• Case Θ; Γ ` v : P a Θ ′ Θ ′ ` P ≤+ [Θ ′]Q a Θ ′′ Θ ′′; Γ ` s : [Θ ′′]N�M a Θ ′′′

Θ; Γ ` v, s : Q→ N�M a Θ ′′′
Aspinecons

Θ ` Q→ N type− Assumption
Θ ` Q type+ Inversion (Twfarrow)
Θ ` N type− Inversion (Twfarrow)

[Θ](Q→ N) = Q→ N Assumption
[Θ]Q→ [Θ]N = Q→ N By definition of [−]−

[Θ]Q = Q By equality
Θ ctx Assumption
Θ ` Γ env Assumption
Ω ctx Assumption

117

Apply typing well-formedness to the first premise:

Θ −→ Θ ′ By Lemma K.5 (Algorithmic typing is w.f)
Θ ′ ctx ′′

Θ ′ ` P type+ ′′

P ground ′′

Now apply the well-formedness of subtyping to the second premise:

Θ ′ ctx Above
P ground Above

[Θ ′][Θ ′]Q = [Θ ′]Q By Lemma D.6 (Context application is idempotent)

Θ ′′ ctx By Lemma E.2 (Algorithmic subtyping is w.f.)
Θ ′ −→ Θ ′′ ′′

[Θ ′′][Θ ′]Q ground ′′

[Θ ′′]Q ground By Lemma D.8 (Extending context preserves groundness)

Apply typing well-formedness to the last premise:

Θ ′′ ` N type− By Lemma D.4 (Context extension preserves w.f.)
Θ ′′ ` [Θ ′′]N type− By Lemma E.1 (Applying context to the type preserves w.f.)
[Θ ′′][Θ ′′]N = [Θ ′′]N By Lemma D.6 (Context application is idempotent)

Θ ` Γ env Assumption
Θ ′′′ ` Γ env By Lemma C.6 (Weak context extension preserves w.f. envs)

Θ ′′ =⇒ Θ ′′′ By Lemma K.5 (Algorithmic typing is w.f)
Θ ′′′ ctx ′′

Restrict Ω such that Θ ′′ extends to it:

Θ ′′′ −→ Ω Assumption
Ω ctx Assumption

Θ ′′′ =⇒ Ω By Lemma C.1 (=⇒ subsumes −→)
Θ ′′ =⇒ Ω By Lemma C.4 (Weak context extension is transitive)

Ω� Θ ′′ ctx By Lemma K.1 (Well-formedness of restricted contexts)
Θ ′′ −→ Ω� Θ ′′ ′′

Ω� Θ ′′ =⇒ Ω ′′

Θ ′ =⇒ Ω By Lemma C.1 (=⇒ subsumes −→)
and Lemma C.4 (Weak context extension is transitive)

Ω ` P type+ By Lemma C.5 (Weak context extension preserves well-formedness)
‖(Ω� Θ ′′)‖ ` [Ω]P ∼=

+ [(Ω� Θ ′′)]P By Lemma F.3 (=⇒ leads to isomorphic types (ground))
Θ −→ Ω� Θ ′′ By Lemma D.3 (Context extension is transitive)

‖Θ‖ ` [Ω]P ∼=
+ [(Ω� Θ ′′)]P By Lemma D.2 (Equality of declarative contexts)

Applying the induction hypothesis to the first premise:

‖Θ‖ ; Γ ` v : [(Ω� Θ ′′)]P By i.h. (term size decreases)
‖Θ‖ ; Γ ` v : P By Lemma D.5 (Applying a context to a ground type)

118

Applying soundness to the second premise:

Θ ′ −→ Ω� Θ ′′ By transitivity
Θ ′ ` [Θ ′]Q type+ By Lemma D.4 (Context extension preserves w.f.)

and Lemma K.3 (Substitution preserves well-formedness of types)

‖Θ ′‖ ` P ≤+ [Ω� Θ ′′][Θ ′]Q By Theorem F.6 (Soundness of algorithmic subtyping)
‖Θ ′‖ ` P ≤+ [Ω� Θ ′′]Q By Lemma F.4 (−→ leads to isomorphic types)
‖Θ‖ ` P ≤+ [Ω]Q By Lemma F.3 (=⇒ leads to isomorphic types (ground))

and Lemma D.2 (Equality of declarative contexts)

Apply the induction hypothesis to the last premise:

‖Θ ′′‖ ; Γ ` s : [Ω][Θ ′′]N�M ′ By i.h. (term size decreases)
‖Θ ′′‖ ` [Ω]M ∼=

−M ′ ′′

Reworking the spine declarative judgment:

‖Θ ′′‖ ` [Ω][Θ ′′]N ∼=
− [Ω]N By Lemma F.2 (=⇒ leads to isomorphic types)

‖Θ ′′‖ ; Γ ` s : [Ω]N�M ′′ By Lemma J.1 (Isomorphic environments type the same terms)
‖Θ ′′‖ `M ′ ∼=−M ′′ ′′

‖Θ‖ ; Γ ` s : [Ω]N�M ′′ By Lemma D.2 (Equality of declarative contexts)

Applying the declarative judgment, we have:

‖Θ‖ ; Γ ` v, s : [Ω]Q→ [Ω]N� [Ω]M By Dspinecons

Z ‖Θ‖ ; Γ ` v, s : [Ω](Q→ N)�M ′′ By definition of [−]−

‖Θ ′′‖ ` [Ω]M ∼=
−M ′′ By Lemma B.7 (Declarative subtyping is transitive)

Z ‖Θ‖ ` [Ω]M ∼=
−M ′′ By Lemma D.2 (Equality of declarative contexts)

• Case Θ; Γ ` s : N�M a Θ ′ α /∈ FUV(N)

Θ; Γ ` s : (∀α.N)�M a Θ ′
Aspinetypeabsnotin

Θ ` ∀α.N type− Assumption
Θ,α ` N type− Inversion (Twfforall)

(1) Θ ` N type− By Lemma K.2 (Type well-formed with type variable removed)
and α /∈ FUV(N)

[Θ](∀α.N) = ∀α.N Assumption
∀α. [Θ]N = ∀α.N By definition of [−]−

(2) [Θ]N = N By equality
(3) Θ ctx Assumption
(4) Θ ` Γ env Assumption
(5) Θ ′ −→ Ω Assumption
(6) Ω ctx Assumption

Apply the induction hypothesis:

119

‖Θ‖ ; Γ ` s : [Ω]N�M ′ By i.h. (term size stays the same and
the number of prenex quantifiers decreases)

Z ‖Θ‖ ` [Ω]M ∼=
−M ′ ′′

Let P be an arbitrary positive type, such that Ω ` P type+:

[P/α]N = N As α /∈ FUV(N)

‖Θ‖ ; Γ ` s : [Ω][P/α]N�M ′ By equality
‖Θ‖ ; Γ ` s : [P/α][Ω]N�M ′ By definition of [−]−

Applying the declarative judgment:

‖Θ‖ ; Γ ` s : ∀α. [Ω]N�M ′ By Dspinetypeabs

Z ‖Θ‖ ; Γ ` s : [Ω](∀α.N)�M ′ By definition of [−]−

• Case Θ, α̂; Γ ` s : [α̂/α]N�M a Θ ′, α̂ [= P] α ∈ FUV(N)

Θ; Γ ` s : (∀α.N)�M a Θ ′, α̂ [= P]
Aspinetypeabsin

Θ ` ∀α.N type− Assumption
Θ,α ` N type− By Twfforall

(1) Θ, α̂ ` [α̂/α]N type− By Lemma K.3 (Substitution preserves well-formedness of types)

[Θ](∀α.N) = ∀α.N Assumption
[Θ]N = N By definition of [−]−

[Θ][α̂/α]N = [α̂/α]N α̂ fresh
(2) [Θ, α̂][α̂/α]N = [α̂/α]N By definition of [−]−

Θ ctx Assumption
(3) Θ, α̂ ctx By Cwfunsolvedguess

Θ ` Γ env Assumption
Θ =⇒ Θ, α̂ By Wcnewunsolvedguess

(4) Θ, α̂ ` Γ env By Lemma C.6 (Weak context extension preserves w.f. envs)
(5) Ω ctx Assumption

Use well-formedness of the subderivation:

Θ, α̂ =⇒ Θ, α̂ [= P] By Lemma K.5 (Algorithmic typing is w.f)

Obtain the solution to α̂ from the complete context:

Θ ′, α̂ [= P] −→ Ω Assumption
Ω = Ω ′, α̂ = P ′ Inversion (Csolveguess), since Ω is a complete context

Ω ′, α̂ = P ′ ctx Above
Ω ′ ` P ′ type+ Inversion (Cwfsolvedguess)

P ′ ground ′′

Ω ` P ′ type+ By Lemma A.2 (Term well-formedness weakening)
Θ ′, α̂ [= P] −→ Ω Assumption
Θ ′, α̂ [= P] ` P ′ type+ By Lemma K.4 (Context extension maintains variables)

Θ, α̂ ` P ′ type+ By Lemma O.1 (Weak context extension maintains variables)
‖Θ‖ ` P ′ type+ Since P ′ ground

120

Apply the induction hypothesis:

‖Θ‖ ; Γ ` s : [Ω][α̂/α]N�M ′ By i.h. (Term size stays the same and the number
of prenex universal quantifiers decreases. The
substitution replaces a positive type by another
positive type, so cannot add or remove prenex
universal quantifiers.)

Z ‖Θ‖ ` [Ω]M ∼=
−M ′ ′′

‖Θ‖ ; Γ ` s : [Ω ′, α̂ = P ′][α̂/α]N�M ′ Substituting Ω = Ω ′, α̂ = P ′ from above
‖Θ‖ ; Γ ` s : [P ′/α][Ω ′, α̂ = P ′]N�M ′ By definition of [−]−

‖Θ‖ ; Γ ` s : [P ′/α][Ω]N�M ′ Substituting Ω = Ω ′, α̂ = P ′ from above
‖Θ‖ ; Γ ` s : (∀α. [Ω]N)�M ′ By Dspinetypeabs

Z ‖Θ‖ ; Γ ` s : [Ω](∀α.N)�M ′ By definition of substitution

O’ Completeness of typing

O’.1 Lemmas

Lemma O.1 (Weak context extension maintains variables). If Θ =⇒ Θ ′ then FEV(Θ) ⊆ FEV(Θ ′) and
FUV(Θ) = FUV(Θ ′).

Proof. All rules ensure the left-hand side and right-hand side contexts have the same set of free universal
variables. Wcempty, Wcuvar, Wcunsolvedguess, Wcsolveguess, and Wcsolvedguess ensure the left-hand side
and right-hand side contexts have the same set of existential variables. The right-hand side context in the
Wcnewunsolvedguess and Wcnewunsolvedguess rules have a set of existential variables that is a superset of the
set of existential variables on the left-hand side context.

Lemma O.2 (Reversing context extension from a complete context). If Ω −→ Θ then Θ −→ Ω.

Proof. By rule induction on the Ω −→ Θ judgment:

• Case

· −→ ·
Cempty

Z · −→ · Assumption

• Case Ω −→ Θ

Ω,α −→ Θ,α
Cuvar

Ω −→ Θ Subderivation
Θ −→ Ω By i.h.

121

Z Θ,α −→ Ω,α By Cuvar

• Case Ω −→ Θ

Ω, α̂ −→ Θ, α̂
Cunsolvedguess

Impossible since the LHS must be a complete context.

• Case Ω −→ Θ

Ω, α̂ −→ Θ, α̂ = P
Csolveguess

Impossible since the LHS must be a complete context.

• Case
Ω −→ Θ ‖Ω‖ ` P ∼=

+ Q

Ω, α̂ = P −→ Θ, α̂ = Q
Csolvedguess

Ω −→ Θ Subderivation
Θ −→ Ω By i.h.

‖Ω‖ ` P ∼=
+Q Premise

‖Θ‖ ` P ∼=
+Q By Lemma D.2 (Equality of declarative contexts)

‖Θ‖ ` Q ∼=
+ P By definition of − ` − ∼=

± −

Z Θ, α̂ = Q −→ Ω, α̂ = P By Csolvedguess

Lemma O.3 (Pulling back restricted contexts). If Θ −→ Θ ′ and Θ ′ � Θ ′′ −→ Θ ′′′, then Θ� Θ ′′ −→ Θ ′′′.

Proof. By rule induction on the Θ −→ Θ ′ judgment:

• Case

· −→ ·
Cempty

Z ·� Θ ′′ −→ Θ ′′′ Assumption

• Case Θ −→ Θ ′

Θ,α −→ Θ ′, α
Cuvar

Θ ′, α� Θ ′′ −→ Θ ′′′ Assumption
Θ ′ � Θ̄ ′′ −→ Θ̄ ′′′ Inversion (�uvar)

Θ ′′ = Θ̄ ′′, α ′′

Θ ′′′ = Θ̄ ′′′, α ′′

Θ −→ Θ ′ Subderivation

Θ� Θ̄ ′′ −→ Θ̄ ′′′ By i.h.

122

(Θ� Θ̄ ′′), α −→ Θ̄ ′′′, α By Cuvar

Z Θ,α� Θ ′′ −→ Θ ′′′ By �uvar

• Case Θ −→ Θ ′

Θ, α̂ −→ Θ ′, α̂
Cunsolvedguess

• Case
Θ −→ Θ ′ ‖Θ‖ ` P ∼=

+ Q

Θ, α̂ = P −→ Θ ′, α̂ = Q
Csolvedguess

Prove these two cases together.

Θ ′, α̂ [= P]� Θ ′′ −→ Θ ′′′ Assumption

Taking cases on whether α̂ [= Q] ∈ Θ ′′:

– Case α̂ [= Q] ∈ Θ ′′:

Θ ′ � Θ̄ ′′ −→ Θ̄ ′′′ Inversion (�guessin)
Θ ′′ = Θ̄ ′′, α̂ [= Q] ′′

Θ ′′′ = Θ̄ ′′′, α̂ [= P] ′′

Θ� Θ̄ ′′ −→ Θ̄ ′′′ By i.h.
(Θ� Θ̄ ′′), α̂ [= P] −→ Θ̄ ′′′, α̂ [= P] By Cunsolvedguess/ Csolvedguess

Z Θ, α̂ [= P]� Θ ′′ −→ Θ ′′′ By �guessin

– Case α̂ [= Q] /∈ Θ ′′:

Θ ′ � Θ ′′ −→ Θ ′′′ Inversion (�guessnotin)
Θ� Θ ′′ −→ Θ ′′′ By i.h.

Z Θ, α̂ [= P]� Θ ′′ −→ Θ ′′′ By �guessnotin

O’.2 Statement

Theorem O.4 (Completeness of algorithmic typing). If Θ ctx, Θ ` Γ env, Θ −→ Ω, and Ω ctx, then:

• If ‖Θ‖ ; Γ ` v : P then ∃Θ ′ such that Θ; Γ ` v : P a Θ ′ and Θ ′ −→ Ω.

• If ‖Θ‖ ; Γ ` t : N then ∃Θ ′ such that Θ; Γ ` t : N a Θ ′ and Θ ′ −→ Ω.

• If ‖Θ‖ ; Γ ` s : [Ω]N�M, Θ ` N type−, and [Θ]N = N, then ∃Θ ′,Ω ′ and M ′ such that Θ; Γ ` s :
N�M ′ a Θ ′, Ω =⇒ Ω ′, Θ ′ −→ Ω ′, ‖Θ‖ ` [Ω ′]M ′ ∼=

− M, [Θ ′]M ′ =M ′, and Ω ′ ctx.

123

Proof. By mutual induction with Theorem N.3 (Soundness of algorithmic typing), using the same judgment
ordering as in Lemma J.1 (Isomorphic environments type the same terms).

• Case x : P ∈ Γ
‖Θ‖ ; Γ ` x : P

Dvar

x : P ∈ Γ Premise
Z Θ; Γ ` x : P a Θ By Avar

Z Θ −→ Ω Assumption

• Case ‖Θ‖ ; Γ, x : P ` t : N
‖Θ‖ ; Γ ` λx : P. t : P → N

Dλabs

Θ ` P → N type− Assumption
Θ ` N type− Inversion (Twfarrow)
P → N ground Assumption

N ground By definition of ground

Θ ctx Assumption

Θ ` Γ env Assumption
Θ ` P → N type− Assumption

Θ ` P type+ Inversion (Twfarrow)
P → N ground Assumption

P ground By definition of ground
Θ ` Γ, x : P env By Ewfvar

Θ −→ Ω Assumption
Ω ctx Assumption

Θ; Γ, x : P ` t : N a Θ ′ By i.h., for some context Θ ′ (term size decreases)
Z Θ ′ −→ Ω ′′

Z Θ; Γ ` λx : P. t : P → N a Θ ′ By Aλabs

• Case ‖Θ‖ , α; Γ ` t : N
‖Θ‖ ; Γ ` Λα. t : ∀α.N

Dgen

‖Θ,α‖ ; Γ ` t : N By definition of ‖−‖

Θ ` ∀α.N type− Assumption
Θ,α ` N type− By Twfforall

∀α.N ground Assumption
N ground By definition of ground

124

Θ ctx Assumption
Θ,α ctx By Cwfuvar

Θ ` Γ env Assumption

Θ −→ Ω Assumption
Θ,α −→ Ω,α By Cuvar

Ω ctx Assumption
Ω,α ctx By Cwfuvar

Θ,α; Γ ` t : N a Θ ′ By i.h., for some context Θ ′ (term size decreases)
Θ ′ −→ Ω,α ′′

Θ ′ = Θ ′′, α Inversion (Cuvar)for some context Θ ′′

Z Θ ′′ −→ Ω ′′

Θ,α; Γ ` t : N a Θ ′′, α Substituting for Θ ′

Z Θ; Γ ` Λα. t : ∀α.N a Θ ′′ By Agen

• Case ‖Θ‖ ; Γ ` t : N
‖Θ‖ ; Γ ` {t} : ↓N Dthunk

Θ ctx Assumption
Θ ` Γ env Assumption

Θ −→ Ω Assumption
Ω ctx Assumption

Θ; Γ ` t : N a Θ ′ By i.h. (term size decreases)
Z Θ ′ −→ Ω ′′

Z Θ; Γ ` {t} : ↓N a Θ ′ By Athunk

• Case ‖Θ‖ ; Γ ` v : P
‖Θ‖ ; Γ ` return v : ↑P Dreturn

Symmetric to Dthunk case.

• Case ‖Θ‖ ; Γ ` v : ↓M ‖Θ‖ ; Γ ` s :M� ↑Q ‖Θ‖ ` ↑P ≤− ↑Q ‖Θ‖ ; Γ, x : P ` t : N
‖Θ‖ ; Γ ` let x : P = v(s); t : N

Dambiguouslet

Θ ctx Assumption
Θ ` Γ env Assumption

Θ −→ Ω Assumption
Ω ctx Assumption

‖Θ‖ ; Γ ` v : ↓M Subderivation

Apply the induction hypothesis to give a context Θ ′ such that:

Θ; Γ ` v : ↓M a Θ ′ By i.h. (term size decreases)

125

Θ ′ −→ Ω ′′

Applying well-formedness:

Θ −→ Θ ′ By Lemma K.5 (Algorithmic typing is w.f)
Θ ′ ctx ′′

Θ ′ ` ↓M type+ ′′↓M ground ′′

Rework the second premise so we can apply the induction hypothesis:

‖Θ‖ ; Γ ` s :M� ↑Q Premise
‖Θ‖ ; Γ ` s : [Ω]M� ↑Q By Lemma D.5 (Applying a context to a ground type)
‖Θ ′‖ ; Γ ` s : [Ω]M� ↑Q By Lemma D.2 (Equality of declarative contexts)

Next show the antecedents of the second premise’s induction hypothesis:

Θ ′ ctx Above
Θ =⇒ Θ ′ By Lemma C.1 (=⇒ subsumes −→)
Θ ′ ` Γ env By Lemma C.6 (Weak context extension preserves w.f. envs)

Θ ′ −→ Ω Above
Ω ctx Above

Θ ′ `M type− Inversion (Twfshift↓)
[Θ ′]M = M By Lemma D.5 (Applying a context to a ground type)

Apply the induction hypothesis to give a contexts Θ ′′, Ω ′ and a type Q ′ such that:

Θ ′; Γ ` s :M� ↑Q ′ a Θ ′′ By i.h. (term size decreases)
Ω =⇒ Ω ′ ′′

Θ ′′ −→ Ω ′ ′′

‖Θ ′‖ ` [Ω ′]↑Q ′ ∼=− ↑Q ′′

[Θ ′′]↑Q ′ = ↑Q ′ ′′

Ω ′ ctx ′′

Applying well-formedness:

Θ ′ =⇒ Θ ′′ By Lemma K.5 (Algorithmic typing is w.f)
Θ ′′ ctx ′′

Θ ′′ ` ↑Q ′ type− ′′

[Θ ′′]↑Q ′ = ↑Q ′ ′′

Now rework the third premise to match algorithmic rule. First show the third premise of the declarative
rule:

‖Θ‖ ` ↑P ≤− ↑Q Premise
Θ =⇒ Θ ′′ By Lemma C.4 (Weak context extension is transitive)

‖Θ ′′‖ ` ↑P ≤− ↑Q By Lemma C.3 (Equality of declarative contexts (weak))
‖Θ ′′‖ ` [Ω ′]↑Q ′ ∼=− ↑Q By Lemma C.3 (Equality of declarative contexts (weak))

‖Θ ′′‖ ` ↑P ≤− ↑[Ω ′]Q ′ By Lemma B.7 (Declarative subtyping is transitive)
‖Θ ′′‖ ` P ≤+ [Ω ′]Q ′ Inversion (≤±Dshift↑)

Show the antecedents of completeness:

126

Θ ′′ ctx Above
Θ ′′ −→ Ω ′ Above

Ω ′ ctx Above

Θ ` P type+ P annotation
Θ ′′ ` P type+ By Lemma C.5 (Weak context extension preserves well-formedness)

Θ ′′ ` ↑Q ′ type− Above
Θ ′′ ` Q ′ type+ Inversion (Twfshift↑)

P ground P annotation
[Θ ′′]↑Q ′ = ↑Q ′ Above
[Θ ′′]Q ′ = Q ′ By definition of [−]−

Applying Theorem G.5 (Completeness of algorithmic subtyping), we have the following for some context
Θ ′′′:

Θ ′′ ` P ≤+Q ′ a Θ ′′′ By Theorem G.5 (Completeness of algorithmic subtyping)
Θ ′′′ −→ Ω ′ ′′

Now appeal to the well-formedness of the algorithmic subtyping judgment:

Θ ′′′ ctx By Lemma K.5 (Algorithmic typing is w.f)
Θ ′′ −→ Θ ′′′ ′′

[Θ ′′′]Q ′ ground ′′

Now show the fourth premise of the declarative rule:

‖Θ ′′‖ ` ↑P ≤− ↑[Ω ′]Q ′ Above
‖Θ ′′′‖ ` ↑P ≤− ↑[Ω ′]Q ′ By Lemma D.2 (Equality of declarative contexts)

‖Θ ′′′‖ ` [Ω ′]Q ′ ≤+ P Inversion (≤±Dshift↑)
‖Θ ′′′‖ ` [Ω ′][Θ ′′′]Q ′ ≤+ [Ω ′]Q ′ By Lemma F.4 (−→ leads to isomorphic types)
‖Θ ′′′‖ ` [Ω ′][Θ ′′′]Q ′ ≤+ P By Lemma B.7 (Declarative subtyping is transitive)

Show the antecedents of completeness:

Θ ′′′ ctx Above
Θ ′′′ −→ Ω ′ Above

Ω ′ ctx Above

Θ ′′′ ` P type+ By Lemma D.4 (Context extension preserves w.f.)
Θ ′′′ ` Q ′ type+ By Lemma D.4 (Context extension preserves w.f.)

Θ ′′′ ` [Θ ′′′]Q ′ type+ By Lemma E.1 (Applying context to the type preserves w.f.)

[Θ ′′′]Q ′ ground Above
[Θ ′′′]P = P By Lemma D.5 (Applying a context to a ground type)

Applying Theorem G.5 (Completeness of algorithmic subtyping), we have the following for some context
Θ ′′′:

Θ ′′′ ` [Θ ′′′]Q ′ ≤+ P a Θ(4) By Theorem G.5 (Completeness of algorithmic subtyping)
Θ(4) −→ Ω ′ ′′

Now appeal to the well-formedness of the algorithmic subtyping judgment:

127

Θ(4) ctx By Lemma K.5 (Algorithmic typing is w.f)
Θ ′′′ −→ Θ(4) ′′

Let the restricted context Θ(5) = Θ(4) � Θ:

Θ −→ Θ(5) By Lemma K.1 (Well-formedness of restricted contexts)
Θ(5) ctx ′′

Ω ctx Above
Ω ′ ctx Above

Ω =⇒ Ω ′ Above
Ω −→ Ω ′ � Ω By Lemma K.1 (Well-formedness of restricted contexts)

Ω ′ � Ω −→ Ω By Lemma O.2 (Reversing context extension from a complete context)
Θ(4) −→ Ω ′ Above

Θ(4) � Ω −→ Ω By Lemma O.3 (Pulling back restricted contexts)
Θ −→ Ω Above

Θ(4) � Θ −→ Ω By Lemma N.2 (Identical restricted contexts)
Θ(5) −→ Ω Substituting in definition of Θ(5)

Rework the final premise to match the algorithmic rule:

‖Θ‖ ; Γ, x : P ` t : N Premise∥∥Θ(5)
∥∥ ; Γ, x : P ` t : N By Lemma D.2 (Equality of declarative contexts)

Show the antecedents of the final premise’s induction hypothesis:

Θ −→ Θ(5) Above
Θ ` N type− Assumption

Θ(5) ` N type− By Lemma D.4 (Context extension preserves w.f.)
N ground Assumption

Θ(5) ctx As shown above
Θ(5) −→ Ω Above

Ω ctx Assumption

Θ ` Γ env Assumption
Θ =⇒ Θ(5) By Lemma C.1 (=⇒ subsumes −→)
Θ(5) ` Γ env By Lemma C.6 (Weak context extension preserves w.f. envs)
Θ ` P type+ P an annotation

Θ(5) ` P type+ By Lemma D.4 (Context extension preserves w.f.)
P ground P an annotation

Θ(5) ` Γ, x : P env By Ewfvar

Apply the induction hypothesis, to give a context Θ(6), such that:

Z Θ(6) −→ Ω By i.h. (term size decreases)
Θ(5); Γ, x : P ` t : N a Θ(6) ′′

Z Θ; Γ ` let x : P = v(s); t : N a Θ(6) By Aambiguouslet

128

• Case ‖Θ‖ ; Γ ` v : ↓M ‖Θ‖ ; Γ ` s :M� ↑Q
‖Θ‖ ; Γ, x : Q ` t : N ∀P. if ‖Θ‖ ; Γ ` s :M� ↑P then ‖Θ‖ ` Q ∼=

+ P

‖Θ‖ ; Γ ` let x = v(s); t : N
Dunambiguouslet

Θ ctx Assumption
Θ ` Γ env Assumption

Θ −→ Ω Assumption
Ω ctx Assumption

‖Θ‖ ; Γ ` v : ↓M Subderivation

Apply the induction hypothesis to give a context Θ ′ such that:

(1) Θ; Γ ` v : ↓M a Θ ′ By i.h. (term size decreases)
Θ ′ −→ Ω ′′

Applying well-formedness:

Θ −→ Θ ′ By Lemma K.5 (Algorithmic typing is w.f)
Θ ′ ctx ′′

Θ ′ ` ↓M type+ ′′↓M ground ′′

Rework the second premise so we can apply the induction hypothesis:

‖Θ‖ ; Γ ` s :M� ↑Q Premise
‖Θ‖ ; Γ ` s : [Ω]M� ↑Q By Lemma D.5 (Applying a context to a ground type)
‖Θ ′‖ ; Γ ` s : [Ω]M� ↑Q By Lemma D.2 (Equality of declarative contexts)

Next show the antecedents of the second premise’s induction hypothesis:

Θ ′ ctx Above
Θ =⇒ Θ ′ By Lemma C.1 (=⇒ subsumes −→)
Θ ′ ` Γ env By Lemma C.6 (Weak context extension preserves w.f. envs)

Θ ′ −→ Ω Above
Ω ctx Above

Θ ′ `M type− Inversion (Twfshift↓)
[Θ ′]M = M By Lemma D.5 (Applying a context to a ground type)

Apply the induction hypothesis to give a contexts Θ ′′, Ω ′ and a type Q ′ such that:

(2) Θ ′; Γ ` s :M� ↑Q ′ a Θ ′′ By i.h. (term size decreases)
Ω =⇒ Ω ′ ′′

Θ ′′ −→ Ω ′ ′′

(3) ‖Θ ′‖ ` [Ω ′]↑Q ′ ∼=− ↑Q ′′

[Θ ′′]↑Q ′ = ↑Q ′ ′′

Ω ′ ctx ′′

Applying well-formedness:

Θ ′ =⇒ Θ ′′ By Lemma K.5 (Algorithmic typing is w.f)
FEV(↑Q ′) ⊆ FEV(M) ∪ (FEV(Θ ′′) \ FEV(Θ ′)) ′′

129

Θ ′′ ctx ′′

Θ ′′ ` ↑Q ′ type− ′′

[Θ ′′]↑Q ′ = ↑Q ′ ′′

From these conclusions we can deduce:

FEV(Q ′) ⊆ FEV(M) ∪ (FEV(Θ ′′) \ FEV(Θ ′)) By definition of FEV and above
FEV(M) = ∅ Since M ground
FEV(Q ′) ⊆ FEV(Θ ′′) \ FEV(Θ ′) Substituting above equations
FEV(Θ ′) ⊆ FEV(Θ ′′) By Lemma O.1 (Weak context extension maintains variables)

FEV(Q ′) ∩ FEV(Θ ′) = ∅ By definition of ⊆

Next prove by contradiction that we have Q ′ ground from the induction hypothesis. Assume FEV(Q ′) 6= ∅.
Then:

(4) α̂ ∈ FEV(Q ′) Necessarily true for some α̂, otherwise
Q ′ would not be ground

Let R = [Ω ′]α̂ and define Ω ′′ as the complete context obtained by taking Ω ′ and substituting the α̂ = R
context item with α̂ = ↓↑R. Now apply soundness to the algorithmic judgment but usingΩ ′′ as the complete
context:

Θ ′ ctx Above
Θ ′ ` Γ env Above

Θ ′′ −→ Ω ′′ Since (a) Θ ′′ −→ Ω ′ and α̂ ∈ FEV(Q ′) implies
(b) α̂ is unsolved in Θ ′′

Θ ′; Γ ` s :M� ↑Q ′ a Θ ′′ Above
Ω ′L ` R type+ Inversion (Cwfsolvedguess), for some prefix Ω ′L of Ω ′

(this is also a prefix of Ω ′′ by definition of Ω ′′)
R ground ′′

Ω ′L ` ↓↑R type+ By Twfshift↑ and Twfshift↓↓↑R ground By definition of ground
Ω ′′ ctx By Ω ′ ctx and above two statements

Θ ′ `M type− Above
[Θ ′]M = M Above

‖Θ ′‖ ; Γ ` s : [Ω ′′]M� Q ′′ By Theorem N.3 (Soundness of algorithmic typing)
(term size decreases)

‖Θ ′‖ ` Q ′′ ∼=+ [Ω ′′]↑Q ′ ′′

(5) ‖Θ‖ ` Q ′′ ∼=+ [Ω ′′]↑Q ′ By Lemma D.2 (Equality of declarative contexts)
Ω =⇒ Ω ′ Above
Ω =⇒ Ω ′′ Replacing the instance of Wcsolveguess

‖Θ‖ ; Γ ` s : [Ω ′′]M� Q ′′ By Lemma C.3 (Equality of declarative contexts (weak))
‖Θ‖ ; Γ ` s :M� Q ′′ By Lemma D.5 (Applying a context to a ground type)

Now make use of the final premise:

‖Θ‖ ` Q ∼=
+Q ′′ Instantiating final premise with P = Q ′′

‖Θ‖ ` Q ∼=
+ [Ω ′′]↑Q ′ Applying Lemma B.7 (Declarative subtyping is transitive)

to above and (5)
‖Θ‖ ` [Ω ′]↑Q ′ ∼=− ↑Q Applying Lemma D.2 (Equality of declarative contexts)

to (3)

130

‖Θ‖ ` [Ω ′]Q ′ ∼=
+Q Inversion (≤±Dshift↑)

‖Θ‖ ` [Ω ′]Q ′ ∼=
+ [Ω ′′]Q ′ By Lemma B.7 (Declarative subtyping is transitive)

However:

‖Θ‖ ` R 6∼=+ ↑↓R Must have the same number of shifts on both sides
of the declarative subtyping judgment

‖Θ‖ ` [Ω ′]Q ′ 6∼=+ [Ω ′′]Q ′ Since α̂ ∈ FEV(Q ′) by (4)

This is a contradiction, hence Q ′ must be ground:

(6) FEV(Q ′) = ∅ Since Q ′ ground

Next, restrict the output context of the spine judgment:

(7) Let Θ ′′′ = Θ ′′ � Θ.
Θ ctx Above
Θ ′′ ctx Above

Θ =⇒ Θ ′′ Above

Θ −→ Θ ′′′ By Lemma K.1 (Well-formedness of restricted contexts)
Θ ′′′ ctx ′′

Ω ctx Above
Ω ′ ctx Above

Ω =⇒ Ω ′ Above
Ω −→ Ω ′ � Ω By Lemma K.1 (Well-formedness of restricted contexts)

Ω ′ � Ω −→ Ω By Lemma O.2 (Reversing context extension from a complete context)

Θ ′′ −→ Ω ′ Above
Θ ′′ � Ω −→ Ω By Lemma O.3 (Pulling back restricted contexts)

Θ −→ Ω Above
Θ ′′ � Θ −→ Ω By Lemma N.2 (Identical restricted contexts)
Θ ′′′ −→ Ω Substituting in definition of Θ ′′′

Rework the third premise to match the algorithmic judgment:

‖Θ‖ ; Γ, x : Q ` t : N Premise
‖Θ‖ ` [Ω ′]↑Q ′ ∼=− ↑Q Above
‖Θ‖ ; Γ, x : [Ω ′]Q ′ ` t : N By Lemma J.1 (Isomorphic environments type the same terms)
‖Θ‖ ; Γ, x : Q ′ ` t : N By Lemma D.5 (Applying a context to a ground type)
‖Θ ′′′‖ ; Γ, x : Q ′ ` t : N By Lemma D.2 (Equality of declarative contexts)

Next show the antecedents of the induction hypothesis:

Θ ′′′ ctx Above

Θ ` Γ env Above
Θ ′′′ ` Γ env By Lemma C.6 (Weak context extension preserves w.f. envs)

Θ ′′ ` Q ′ type+ Inversion (Twfshift↑)
Q ′ ground Above

Θ ′′′ ` Q ′ type+ By definition of restricted context Θ ′′′ and since Q ′ ground

131

Θ ′′′ ` Γ, x : Q ′ env By Ewfvar

Θ ′′′ −→ Ω Above
Ω ctx Above

‖Θ ′′′‖ ; Γ, x : Q ′ ` t : N Above
Θ ` N type− Assumption

Θ ′′′ ` N type− By Θ −→ Θ ′′′ and Lemma D.4 (Context extension preserves w.f.)
N ground Assumption

Applying the induction hypothesis, we have for a context Θ(4):

(8) Θ ′′′; Γ, x : Q ′ ` t : N a Θ(4) By i.h. (term size decreases)
Z Θ(4) −→ Ω ′′

Z Θ; Γ ` let x = v(s); t : N a Θ(4) Applying Aunambiguouslet to (1), (2), (6), (7), and (8)

• Case

‖Θ‖ ; Γ ` ε : N� N
Dspinenil

The output context will be Θ, the complete context will be Ω, and the output type will be M.

Z Θ; Γ ` ε : N� N a Θ By Aspinenil

Z Ω =⇒ Ω By Lemma C.2 (Weak context extension is reflexive)
Z Θ −→ Ω Assumption

‖Θ‖ ` [Ω][Θ]N ∼=
− [Θ]N By Lemma F.4 (−→ leads to isomorphic types)

Z [Θ]N = N Assumption
Z ‖Θ‖ ` [Ω]N ∼=

−N Substituting in above equation
Z [Θ]N = N Assumption
Z Ω ctx Assumption

• Case ‖Θ‖ ; Γ ` v : P ‖Θ‖ ` P ≤+ [Ω]Q ‖Θ‖ ; Γ ` s : [Ω]N�M

‖Θ‖ ; Γ ` v, s : [Ω](Q→ N)�M
Dspinecons

Θ ctx Assumption
Θ ` Γ env Assumption

Θ −→ Ω Assumption
Ω ctx Assumption

By the induction hypothesis for the first premise, there exists a context Θ ′, such that:

Θ; Γ ` v : P a Θ ′ By i.h. (term size decreases)
Θ ′ −→ Ω ′′

Apply well-formedness to this algorithmic judgment:

Θ −→ Θ ′ By Lemma K.5 (Algorithmic typing is w.f)

132

Θ ′ ctx ′′

Θ ` P type+ ′′

P ground ′′

Now use completeness of subtyping:

Θ ′ ctx Above
Θ ′ −→ Ω Above

Ω ctx Above

‖Θ‖ ` P ≤+ [Ω]Q Subderivation
‖Θ ′‖ ` P ≤+ [Ω]Q By Lemma D.2 (Equality of declarative contexts)
‖Θ ′‖ ` P ≤+ [Ω][Θ ′]Q By Lemma F.4 (−→ leads to isomorphic types)

Θ ′ ` P type+ By Lemma D.4 (Context extension preserves w.f.)
Θ ` Q→ N type− Assumption

Θ ` Q type+ By Twfarrow

Θ ′ ` Q type+ By Lemma D.4 (Context extension preserves w.f.)
Θ ′ ` [Θ ′]Q type+ By Lemma E.1 (Applying context to the type preserves w.f.)

P ground Above
[Θ ′][Θ ′]Q = [Θ ′]Q By Lemma D.6 (Context application is idempotent)

Θ ′ ` P ≤+ [Θ ′]Q a Θ ′′ By Theorem G.5 (Completeness of algorithmic subtyping)
Θ ′′ −→ Ω ′′

Applying well-formedness:

Θ ′′ ctx By Lemma E.2 (Algorithmic subtyping is w.f.)
Θ ′ −→ Θ ′′ ′′

[Θ ′′][Θ ′]Q ground ′′

Next rework the third premise to match the algorithmic rule:

‖Θ ′′‖ ; Γ ` s : [Ω]N�M By Lemma D.2 (Equality of declarative contexts)
‖Θ ′′‖ ` [Ω][Θ ′′]N ∼=

− [Ω]N By Lemma F.4 (−→ leads to isomorphic types)
‖Θ ′′‖ ; Γ ` s : [Ω][Θ ′′]N�M ′ By Lemma J.1 (Isomorphic environments type the same terms)

‖Θ ′′‖ `M ∼=
−M ′ ′′

Now show the antecedents of the third premise’s induction hypothesis:

Θ ′′ ctx Above
Θ ` Γ env Assumption
Θ ′′ ` Γ env By Lemma C.6 (Weak context extension preserves w.f. envs)

Θ ` P → N type− Assumption
Θ ` N type− By Twfarrow

Θ −→ Θ ′′ By Lemma D.3 (Context extension is transitive)
Θ ′′ ` N type− By Lemma D.4 (Context extension preserves w.f.)

Θ ′′ ` [Θ ′′]N type− By Lemma E.1 (Applying context to the type preserves w.f.)

[Θ ′′][Θ ′′]N = [Θ ′′]N By Lemma D.6 (Context application is idempotent)

133

Θ ′′ −→ Ω By i.h. (term size decreases)
Ω ctx Assumption

Now apply the induction hypothesis to this third premise. This gives the following for some contexts Θ ′′′,
Ω ′ and type M ′′:

Θ ′′; Γ ` s : [Θ ′′]N�M ′′ a Θ ′′′ By i.h. (term size decreases)
Z Ω =⇒ Ω ′ ′′

Z Θ ′′′ −→ Ω ′ ′′

‖Θ ′′‖ ` [Ω ′]M ′′ ∼=
−M ′ ′′

Z [Θ ′′′]M ′′ = M ′′ ′′

Z Ω ′ ctx ′′

‖Θ ′‖ ` [Ω]M ′′ ∼=
−M By Lemma B.7 (Declarative subtyping is transitive)

Z ‖Θ‖ ` [Ω]M ′′ ∼=
−M By Lemma D.2 (Equality of declarative contexts)

Finally, apply the algorithmic judgment:

Z Θ; Γ ` v, s : P → N�M ′′ a Θ ′′ By Aspinecons

• Case ‖Θ‖ ` P type+ ‖Θ‖ ; Γ ` s : [P/α]([Ω]N)�M

‖Θ‖ ; Γ ` s : [Ω](∀α.N)�M
Dspinetypeabs

Take cases on whether α ∈ FUV(N)

– Case α /∈ FUV(N):

[P/α]([Ω]N) = [Ω]N By α /∈ FUV(N)

‖Θ‖ ; Γ ` s : [Ω]N�M By equality

Θ ` ∀α.N type− Assumption
Θ,α ` N type− By Twfforall

Θ ` N type− By α /∈ FUV(N) and Lemma K.2 (Type well-formed with type variable removed)

[Θ](∀α.N) = ∀α.N Assumption
[Θ]N = N By definition of [−]−

Θ ctx Assumption
Θ ` Γ env Assumption

Θ −→ Ω Assumption
Ω ctx Assumption

By the induction hypothesis we have contexts Θ ′, Ω ′ and type M ′, such that:

Z Ω =⇒ Ω ′ By i.h. (Term size stays the same and the number of
prenex universal quantifiers decreases. Since applying
the context only replaces positive types by positive
types, it cannot change the number of prenex
universal quantifiers.)

Z Θ ′ −→ Ω ′ ′′

134

Z ‖Θ‖ ` [Ω]M ′ ∼=
−M ′′

Z [Θ ′]M ′ = M ′ ′′

Z Ω ′ ctx ′′

Θ; Γ ` s : N�M ′ a Θ ′ ′′

Applying the algorithmic judgment:

Z Θ; Γ ` s : ∀α.N�M ′ a Θ ′ By Aspinetypeabsnotin

– Case α ∈ FUV(N):
First rework the premise to match the algorithmic rule:

‖Θ‖ ; Γ ` s : [P/α]([Ω]N)�M Premise
‖Θ‖ ; Γ ` s : [[Ω]P/α]([Ω]N)�M P ground and Lemma D.5 (Applying a context to a ground type)
‖Θ‖ ; Γ ` s : [Ω]([P/α]N)�M By definition of [−]−

[Ω, α̂ = P](Θ, α̂); [Ω, α̂ = P]Γ ` s : [Ω, α̂ = P]([α̂/α]N)�M For fresh α̂

Now show the antecedents of the induction hypothesis:

Θ ` ∀α.N type− Assumption
Θ,α ` N type− By Twfforall

Θ, α̂ ` [α̂/α]N type− By Lemma K.3 (Substitution preserves well-formedness of types)

[Θ](∀α.N) = ∀α.N Assumption
[Θ]N = N By definition of [−]−

[α̂/α]([Θ]N) = [α̂/α]N By equality
[Θ]([α̂/α]N) = [α̂/α]N α̂ fresh

[Θ, α̂]([α̂/α]N) = [α̂/α]N By definition of [−]−

Θ ctx Assumption
Θ, α̂ ctx By Cwfunsolvedguess

Θ =⇒ Θ By Lemma C.2 (Weak context extension is reflexive)
Θ =⇒ Θ, α̂ By Wcnewunsolvedguess

Θ ` Γ env Assumption
Θ, α̂ ` Γ env By Θ =⇒ Θ, α̂ and

Lemma C.6 (Weak context extension preserves w.f. envs)

Θ −→ Ω Assumption
Θ, α̂ −→ Ω, α̂ = P By Csolveguess

Ω ctx Assumption
P ground P declarative type

‖Θ‖ ` P type+ Premise
Ω ` P type+ Since Θ −→ Ω, and context extension cannot add

or remove universal variables
Ω, α̂ = P ctx By Cwfsolvedguess

135

Applying the induction hypothesis, we have contexts Θ ′, Ω ′ and a type M ′, such that:

Ω, α̂ = P =⇒ Ω ′ By i.h. (Term size stays the same and the number of
prenex universal quantifiers decreases. Since applying
the context only replaces positive types by positive
types, it cannot change the number of prenex
universal quantifiers.)

Z Θ ′ −→ Ω ′ ′′

Z ‖Θ‖ ` [Ω ′]M ′ ∼=
−M ′′

Z [Θ ′]M ′ = M ′ ′′

Z Ω ′ ctx ′′

Θ, α̂; Γ ` s : [α̂/α]N�M ′ a Θ ′ ′′

Ω, α̂ = P =⇒ Ω ′ Above
Ω =⇒ Ω By Lemma C.2 (Weak context extension is reflexive)
Ω =⇒ Ω, α̂ = P By Wcnewsolvedguess

Z Ω =⇒ Ω ′ By Lemma C.4 (Weak context extension is transitive)

Finally, applying the algorithmic judgment:

Z Θ; Γ ` s : (∀α.N)�M ′ a Θ ′ By Aspinetypeabsin

136

	Definitions
	Lemmas
	Weakening
	Declarative subtyping
	Isomorphic types
	Transitivity

	Weak context extension
	Context extension
	Well-formedness of subtyping
	Soundness of subtyping
	Lemmas for soundness
	Statement

	Completeness of subtyping
	Lemmas for completeness
	Statement

	Determinism of subtyping
	Decidability of subtyping
	Lemmas for decidability
	Statement

	Isomorphic types
	Well-formedness of typing
	Determinism of typing
	Decidability of typing
	Soundness of typing
	Lemmas
	Statement

	Completeness of typing
	Lemmas
	Statement

	Proofs
	Weakening
	Declarative subtyping
	Isomorphic types
	Transitivity

	Weak context extension
	Context extension
	Well-formedness of subtyping
	Soundness of subtyping
	Lemmas for soundness
	Statement

	Completeness of subtyping
	Lemmas for completeness
	Statement

	Determinism of subtyping
	Decidability of subtyping
	Lemmas for decidability
	Statement

	Isomorphic types
	Well-formedness of typing
	Determinism of typing
	Decidability of typing
	Soundness of typing
	Lemmas
	Statement

	Completeness of typing
	Lemmas
	Statement

